Skip to:

Adjacent Segment Disease in a Patient With Klippel-Feil Syndrome and Radiculopathy: Surgical Treatment With Two-Level Disc Replacement: Case report

Alejandro Reyes-Sánchez, MD, Barón Zárate-Kalfópulos, MD, Luis Miguel Rosales-Olivares, MD

National Rehabilitation Center Spine Service, Mexico City, Mexico


Klippel-Feil syndrome (KFS) is a complex congenital condition characterized by improper segmentation of cervical motion segments that could contribute to undesirable adjacent segment degeneration. KFS patients have a strong tendency to present with disease in the adjacent segments. When this condition is present, anterior decompression followed by total disc replacement can be performed safely and can lead to good clinical results. This treatment has theoretical advantages compared with anterior decompression and fusion. Comparative studies and long-term follow-up are needed. Complications associated with fusion include loss of a motion segment, disc height loss, subsidence of the graft, progressive degenerative changes at the adjacent level, graft-related complications, and graft-site complications. Such new technologies as motion preservation spine arthroplasty represent attempts to avoid these complications.

Here we present a case report of a 62-year-old female patient with type I congenital fusion at the C5–6 level, with a history of neck pain and right radiculopathy at C5–7. X-rays and MRI show evidence of adjacent segment degeneration at levels above and below congenital fusion. The patient's preoperative visual analog score (VAS) for neck pain was 7 out of a possible 10, her score for right upper extremity pain was 8 out of 10, and her Neck Disability Index (NDI) was 32%. Surgical treatment consisted of anterior decompression and total disc replacement at both levels. At 1-year follow-up, the patient's VAS for neck pain was 2 out of 10, her VAS score for right upper extremity pain was 1 of 10, and her NDI was 9%.

Klippel-Feil syndrome, adjacent segment degeneration, cervical total disc replacement, motion preservation
Volume 1 Issue 4