Skip to:

Radiation exposure during the lateral lumbar interbody fusion procedure and techniques to reduce radiation dosage

Abstract 

Background

Fluoroscopy is widely used in spine surgery to assist with graft and hardware placement. Previous studies have not measured radiation exposure to a surgeon during minimally invasive lateral lumbar spine surgery for single-level discectomy and interbody cage insertion. This study was performed to model and measure radiation exposure to a surgeon during spine surgery using the direct lateral lumbar procedure.

Methods

The study was performed using a mannequin substituting for the surgeon and a cadaver substituting for the patient. Radiation was measured with dosimeters attached to 6 locations on the mannequin using a OEC Medical Systems 9800 C-arm fluoroscope (OEC Medical Systems, Salt Lake City, Utah). Three different fluoroscopy setups were tested: a standard imaging setup, a standard setup using pulsed-mode fluoroscopy, and a reversed setup. The experiment was tested 5 times per setup, and the dosimeters' values were recorded.

Results

The highest amount of radiation exposure occurred when obtaining an anteroposterior view of the spine in the standard setup. Compared with the standard setup, the pulsed-mode setting decreased the radiation exposure to the mannequin by a factor of 6 times (P < .001). Compared with the standard setup, the reversed setup also decreased the radiation exposure to the mannequin by a factor of 6 times (P < .001) and it had the lowest amount of radiation exposure to the eye level (P < .001).

Conclusions

Care should be taken when one is obtaining an anteroposterior view of the lumbar spine during lateral lumbar procedures to limit radiation exposure. Radiation exposure to the surgeon can be greatly minimized by using either a pulsed imaging mode or the reversed setup. The reversed setup has the lowest amount of radiation exposure to the eye level.

Volume 6
doi: 
10.1016/j.ijsp.2012.09.001