Skip to:

Multilevel extreme lateral interbody fusion (XLIF) and osteotomies for 3-dimensional severe deformity: 25 consecutive cases

Paul C. McAfee, MD, MBA, Erin Shucosky, RN, Liana Chotikul, RN, CRNP, Ben Salari, DO, Lun Chen, MD, Dan Jerrems, PA

Spine and Scoliosis Center, University of Maryland, St. Joseph Medical Center, Towson, MD



This is a retrospective review of 25 patients with severe lumbar nerve root compression undergoing multilevel anterior retroperitoneal lumbar interbody fusion and posterior instrumentation for deformity. The objective is to analyze the outcomes and clinical results from anterior interbody fusions performed through a lateral approach and compare these with traditional surgical procedures.


A consecutive series of 25 patients (78 extreme lateral interbody fusion [XLIF] levels) was identified to illustrate the primary advantages of XLIF in correcting the most extreme of the 3-dimensional deformities that fulfilled the following criteria: (1) a minimum of 40° of scoliosis; (2) 2 or more levels of translation, anterior spondylolisthesis, and lateral subluxation (subluxation in 2 planes), causing symptomatic neurogenic claudication and severe spinal stenosis; and (3) lumbar hypokyphosis or flat-back syndrome. In addition, the majority had trunks that were out of balance (central sacral vertical line ≥2 cm from vertical plumb line) or had sagittal imbalance, defined by a distance between the sagittal vertical line and S1 of greater than 3 cm. There were 25 patients who had severe enough deformities fulfilling these criteria that required supplementation of the lateral XLIF with posterior osteotomies and pedicle screw instrumentation.


In our database, with a mean follow-up of 24 months, 85% of patients showed evidence of solid arthrodesis and no subsidence on computed tomography and flexion/extension radiographs. The complication rate remained low, with a perioperative rate of 2.4% and postoperative rate of 12.2%. The lateral listhesis and anterior spondylolisthetic subluxation were anatomically reduced with minimally invasive XLIF. The main finding in these 25 cases was our isolation of the major indication for supplemental posterior surgery: truncal decompensation in patients who are out of balance by 2 cm or more, in whom posterior spinal osteotomies and segmental pedicle screw instrumentation were required at follow up. No patients were out of sagittal balance (sagittal vertical line <3 cm from S1) postoperatively. Segmental instrumentation with osteotomies was also more effective for restoration of physiologic lumbar lordosis compared with anterior stand-alone procedures.


This retrospective study supports the finding that clinical outcomes (coronal/sagittal alignment) improve postoperatively after minimally invasive surgery with multilevel XLIF procedures and are improved compared with larger extensile thoracoabdominal anterior scoliosis procedures.

XLIF, Deformity, Scoliosis, Three column osteotomy
Volume 7