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ABSTRACT
Patient- centric decision- making has imbued all aspects of health care, including spine surgery. This review describes how 

spine surgeons can use evolving technologies and knowledge of disease and pain states to tailor their surgical approach to 
the individual patient. This includes preoperative screening for and optimization of low bone mineral density, intraoperative 
selection of implant material and customization of interbody cages and screws, and postoperative personalization of pain 
regimens and rehabilitation courses. By working in a multidisciplinary fashion, spine surgeons can avail themselves of these 
advances to provide individualized care.
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INTRODUCTION

While personalized medicine has its roots in preven-
tative care, favoring a proactive rather than a reactive 
approach to disease, its principles have now permeated 
all aspects of health care. In an era of performance- 
based reimbursements, there is growing emphasis on 
providing patient- centric decision- making during all 
aspects of their care. This includes all facets of spine 
care, from preoperative optimization to customiza-
tion of intraoperative implants and postoperative pain 
management. While it has long been understood that a 
“1 size fits all” approach is inadequate for instrumen-
tation selection, we now know there are other patient 
customizations of intraoperative implants and postop-
erative pain management. This article aims to provide 
an overview of evolving technologies and management 
algorithms and their implementation in a personalized 
approach to spine surgery.

PREOPERATIVE

Bone Mineral Density Assessment

The number of spine surgeries performed annu-
ally in the United States has increased alongside the 
aging population; however, the incidence of oste-
oporosis has also risen. Spine surgeons can work 
with endocrinologists to better understand how to 

mitigate the effects of osteoporosis preoperatively, 
thereby achieving better fusion and avoiding hard-
ware failure in this population.

Low bone mineral density (BMD) is strongly associ-
ated with postoperative complications1,2 such as pseu-
doarthrosis,3 cage subsidence,4,5 screw lucency,6 and 
proximal junction failure.7,8 Identifying potentially 
osteoporotic patients and implementing a personalized 
BMD optimization regimen in the preoperative setting 
improves the odds of successful fusion and favorable 
postoperative outcomes (Figure 1).

Dual- energy x- ray absorptiometry (DEXA) is the 
gold standard for assessing BMD (Figure 1A).9–12 
The DEXA scan measures areal BMD (aBMD) 
through the degree of x- ray attenuation in patients 
exposed to low- level x- ray radiation.11,13 The 
aBMD is then normalized to the predicated peak 
bone mass, using a T- scored using the National 
Health and Nutrition Examination Survey III.14 A 
T- score of –2.5 or lower indicates osteoporosis and 
an elevated fracture risk. DEXA measurements are 
most commonly done in the spine and hip, which 
are most commonly used to define osteoporosis and 
treatment thresholds for preventing osteoporotic 
fractures.15,16 It is not recommended to measure 
the spine alone, as osteophytes can confound T- 
scores.17 With a grade B rating, the U.S. Preventive 
Services Task Force recommends routine DEXA 
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screening of women aged 65 years or older and 
postmenopausal women younger than 65 years who 
are at increased risk of fracture.9

There are some limitations to DEXA. Spinal 
osteophytes associated with spondylosis have been 
shown to overestimate DEXA- measured BMD.17 
This may partially explain the elevated rates (over 
50%) of osteoporotic compression fractures in 
patients with “normal” spine DEXA scores.18,19 The 
DEXA scan has been shown to have limited accu-
racy in patients with obesity20 and prior instrumen-
tation.10,21 Many spine surgery experts, including 
the AOSpine Knowledge Forum Deformity working 
group, advise DEXA screening of the femur or 
distal radius in all patients being considered for 
elective screening.12,22

In the context of spine surgeries, we consider that 
DEXA scores at the hip are typically the most reli-
able. DEXA scores in the spine can be confounded 
by osteophytes (leading to an artificially elevated 
aBMD) or by compression fractures.17 Patients 
without these complications can still have spinal 
DEXA measurements that are of value for clinical 
decision- making. Although forearm DEXA can be 
used to assess the risk of distal forearm fracture,23 
this has been controversial. In addition, the utility 
of the forearm DEXA in predicting overall skele-
tal health is unclear because of known variability 
based on the specific anatomic landmark used as 
well as whether the dominant vs nondominant arm 
is measured. Therefore, limitations of the use of 
forearm DEXAs have been recommended by the 
International Society for Clinical Densitometry.24

Ancillary software, like the trabecular score 
(TBS), can be applied alongside a DEXA scan to 
obtain complementary of aBMD within the spine. 
The TBS is a textural index that evaluates pixel 
gray- level variations in the lumbar spine DEXA per-
mitting more accurate clinical evaluations of skel-
etal microarchitecture and bone quality.25,26 TBS 
is independent of degenerative bone abnormalities 
such as osteophytes and can reduce underestimat-
ing fracture risk in patients with nonpathological 
DEXA T- scores.27,28 However, older versions of 
TBS software showed inaccuracies in patients with 
high BMI, or if significant structural changes were 
present in the assessed vertebrae. TBS indicative 
of degraded bone quality is generally less than 
1.23.28,29

Another example of aBMD assessment software 
includes the fracture risk assessment tool (FRAX), 
a computer- based algorithm that uses clinical fea-
tures (eg, age, sex, race, and evidence of secondary 
osteoporosis) to estimate the 10- year probability 
of major osteoporotic and hip fractures.30 Unlike 
TBS, treatment decisions for osteoporosis using 
FRAX alone in patients who are treatment naïve 
are well established.31,32 FRAX- based indications 
for treatment are at least 3% for hip or at least 
20% for hip or major osteoporotic fractures (which 
includes the spine), respectively.31,33 TBS is most 
useful for individuals who lie close to a FRAX or 
BMD T- score intervention threshold.28 We rec-
ommend primary BMD screening with DEXA at 
this time, along with the use of TBS and FRAX as 
adjuncts.

Figure 1. An 80- year- old man undergoing preoperative spinal imaging. (A) Lumbar dual- energy x- ray absorptiometry scan. (B) Hounsfield unit (HU) bone mineral 
density at a given level is calculated as the average HU of the superior endplate, middle of the vertebral body, and the inferior endplate. (C) Vertebral bone quality is 
calculated by dividing the median signal intensity of the medullary portions of L1–L4 vertebral bodies by the average signal intensity of the cerebrospinal fluid at L3.
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Computed tomography (CT) and magnetic reso-
nance imaging (MRI) are routinely used to assess sur-
gical spine pathology preoperatively. Currently, neither 
CT nor MRI is clinically validated to evaluate BMD. 
However, newer methods such as a dedicated bone CT 
scan or quantitative CT scanning to determine BMD are 
being developed.34 These advanced methods may be 
available in research settings or in some clinical centers, 
and they can be very helpful for direct assessment of 
volumetric BMDs, especially for patients in whom the 
DEXA may have limited interpretability. We consider 3 
sites of DEXA imaging (hip, spine, and distal forearm) 
with TBS as the gold standard for BMD assessment.

Widely available across standard medical imaging 
viewing software, the Hounsfield unit (HU) is a 
helpful tool for assessing BMD from CT scans. The 
HU is a unitless measure of density derived from a 
normalization of the CT image such that −1000 HU 
corresponds to air, while HU corresponds to pure 
distilled water. Schreiber et al describe estimating 
the BMD of a given vertebra by taking the average 
of HU measured at 3 distinct locations: immediately 
inferior to the superior end plate, middle of the ver-
tebral body, and superior to the inferior end plate 
(Figure 1B).35 Investigators comparing HU mea-
surements in the spine to DEXA- derived T- scores 
have established thresholds indicative of poor BMD 
to range from 73 to 202 HU.

Irrespective of HU findings, a DEXA scan must 
still be used to assess BMD as it is a clinically val-
idated tool and critical for supporting the treatment 
decision- making process. Concordance between 
DEXA T- scores and HU ranges anywhere from 
40% to 54%.36 The use of DEXA in assessing BMD 
in patients with pre- existing spinal hardware has 
proven challenging due to interference from the 
metallic artifact.21 Compelling work suggests that 
HU measurements may best suit this use case. Wan-
derman et al collected pre- and postoperative HU 
measurements from lumbar CT scans of 50 patients 
who underwent L2 and distal instrumented lumbar 
fusions, finding that the postoperative HU at the 
upper instrumented vertebra was strongly cor-
related with and not significantly different from the 
preoperative HU.37

It is crucial to bear in mind that the CT acqui-
sition technique influences HU measurements. CT 
kilovoltage settings have been shown to alter the 
HU unit thresholds for predicting osteoporotic T- 
scores.38 Furthermore, intravenous contrast has 
been shown to slightly overestimate HU. A study 

comparing HU at L1 between CT with and without 
contrast found differences of up to 8%.39 These 
confounders must be accounted for when using HU 
to determine BMD.

Recent work has established MRI- based equiva-
lents for measuring bone density well.40 Ehresmen 
et al described the vertebral bone quality (VBQ) 
score collected from T1- weighted MRI. VBQ is cal-
culated by dividing the median signal intensity of 
the medullary portions of L1 to L4 vertebral bodies 
by the average signal intensity of the cerebrospi-
nal fluid at L3 (Figure 1C). VBQ scores had a pre-
dictive accuracy of 81% in detecting osteopenic/
osteoporotic bone40 and have been shown to cor-
relate moderately with DEXA T- scores.41,42 VBQ 
thresholds indicative of poor BMD range from 2.18 
to 3.06.42,43 Irrespective of VBQ findings, a DEXA 
scan must still be used to assess BMD as it is a clin-
ically validated tool.

VBQ analysis is not without its shortcomings. 
Hyperlipemia has been shown to overestimate the 
presence of osteoporosis compared with DEXA.44 
Although future research is needed to validate this 
new methodology, it remains a viable screening 
tool for osteoporosis.

Pharmacological BMD Optimization for  
Instrumented Spinal Surgery

It is well understood that low BMD is tied to 
poor fusion outcomes.45 Adequate preoperative 
BMD optimization of patients meeting diagnostic 
criteria for osteoporosis is paramount to increasing 
the odds of adequate fusion and maximizing post-
operative outcomes. Our approach to preoperative 
BMD treatment employs apt, interdisciplinary col-
laboration with endocrinologists, who play a pivotal 
role in optimizing osteoporotic patients before and 
after spinal surgery.46–50 First, we employ nonphar-
macological methods, such as physical therapy and 
weight bearing as tolerated. All secondary causes 
of osteoporosis, such as hypogonadism, hypo- or 
hyperthyroidism, renal calcium leak, hypophospha-
tasia, vitamin D deficiency, and hyperparathyroid-
ism, must be explored and treated. We then consider 
pharmacological treatment. The standard pharma-
cological armamentarium comprises vitamin D3, 
bisphosphonates, denosumab, and anabolic med-
ications such as PTH analogs and romosozumab 
(Figure 2).

Vitamin D2 (plant derived) and D3 (animal 
derived) are routinely used in the therapeutic 
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Figure 2. Algorithm for optimization of preoperative bone mineral density. *At this time, starting bisphosphonates as a single agent to treat osteoporosis specifically 
for surgery optimization is not generally warranted. However, surgery is not contraindicated and does not need to be delayed in patients who are currently receiving 
bisphosphonates

 by guest on January 2, 2025https://www.ijssurgery.com/Downloaded from 

https://www.ijssurgery.com/


Personalized Approaches to Spine Surgery

International Journal of Spine Surgery, Vol. 18, No. 6680

management for osteoporosis. Vitamin D is essen-
tial for calcium absorption and bone mineralization, 
and it is generally well tolerated in the doses used 
to improve BMD.51 In a retrospective study evaluat-
ing the effect of perioperative 1,25 hydroxy vitamin 
D3 supplementation on fusion rates in patients 
with osteoporosis, Xu et al found that supplemen-
tation significantly improved 6- month fusion rates 
(76.19% vs 43.48%, P = 0.03).52 In our practice, we 
aim for a serum level goal of 35 to 60 ng/mL.53,54 
Notably, correlations between calcium and vitamin 
D supplementation and coronary artery calcifica-
tion remain controversial.55 Therefore, we recom-
mend supplementation for patients with low dietary 
intake or documented deficiencies, but not oversup-
plementation.

Bisphosphonates are the first- line treatment 
for osteoporosis. This drug class improves BMD 
through osteoclast inhibition and subsequent reduc-
tion of bone resorption. Common side effects 
include reflux and esophagitis.56 Rarely, patients 
may experience osteonecrosis of the jaw and atyp-
ical fracture, although the benefits of fracture 
reduction significantly outweigh the risks of these 
complications.57 Evidence supporting bisphos-
phonate therapy as a single- agent regimen in the 
treatment of osteopenic patients undergoing spinal 
surgery is largely inconclusive.58 While Nagahama 
et al found higher fusion rates in patients given 
alendronate after posterior lumbar interbody fusion, 
Kim et al failed to find any differences when using 
the drug for single- level posterior fusions.59,60 Sim-
ilarly, zoledronic acid, an intravenous bisphospho-
nate, has shown ambiguous results.61 At this time, 
starting bisphosphonates as a single agent to treat 
osteoporosis specifically for preoperative optimi-
zation is not warranted.58 However, surgery is not 
contraindicated and does not need to be delayed in 
patients who are currently receiving bisphospho-
nates.58 Combination therapy of teriparatide with a 
bisphosphonate does not appear to show additional 
benefits over teriparatide alone.58

Anabolics such as teriparatide, a recombinant 
human parathyroid hormone (PTH) analog, are 
excellent medications for treating osteoporosis. It 
increases osteoblast activity and promotes bone 
growth.62 Although the black box warning for induc-
ing osteosarcoma was removed in 2020,63 there is 
still a warning about the risk of bone malignancy 
in patients who are at higher risk of osteosarcoma. 
We generally avoid anabolics in patients with active 

cancer, patients with prior radiation, or patients 
at risk of osteosarcoma (eg, Paget’s), as well as 
patients with growing skeletons.64,65 In a prospec-
tive, nonrandomized study, Ohtori et al found that 
teriparatide treatment not only resulted in higher 
fusion rates compared with bisphosphonates (82% 
vs 68%) but also conferred faster time to fusion (8 
months vs 10 months).66 Ohtori et al also found a 
reduced incidence of pedicle screw loosening in 
patients treated with teriparatide compared with 
those treated with bisphosphonate (7% vs 13%).66 
Cho et al compared cyclic combination treatment of 
teriparatide and bisphosphonates to bisphosphonate 
monotherapy and found that the combination group 
achieved fusion faster.67 Notably, no standard dura-
tion of teriparatide therapy has been defined for 
spinal surgeries. In our practice, if a patient quali-
fies for osteoporosis treatment with teriparatide or 
another PTH analog, then a full 2- year course for 
osteoporosis (starting 3 months prior to surgery, if 
possible) is desirable. In addition, patients who are 
currently only on a bisphosphonate for management 
of their osteoporosis can be considered for transi-
tion to teriparatide in the setting of preoperative 
optimization. Important side effects of PTH analogs 
to monitor for include hypercalcemia and injection 
site infections.

Denosumab is a second- line antiresorptive medi-
cation for the treatment of osteoporosis. Denosumab 
is a monoclonal antibody against the receptor activa-
tor of nuclear factor-κB ligand, and its interactions 
with receptor activator of nuclear factor-κB ligand 
lead to decreased osteoclast activity.68 Because of 
the high risk of spinal compression fractures and 
rebound osteoporosis in patients who discontinue 
denosumab, its use has become much more limited 
for managing osteoporosis.69 In our practice, we 
employ denosumab for patients who cannot toler-
ate bisphosphonates due to renal failure.70 Patients 
receiving denosumab should be counseled that deno-
sumab therapy may need to be lifelong, with unclear 
implications and long- term risks, because denos-
umab transition- off protocols remain suboptimal.69 
In addition, sequential therapy (ie, from denosumab 
onto teriparatide) is associated with increased bone 
loss71 and should not be done. Notably, the DATA- 
SWITCH study also showed that combined therapy 
of denosumab with teriparatide has shown strong 
benefit for osteoporosis management.71 Ide et al fol-
lowed 16 patients treated with denosumab and teri-
paratide, enabling higher fusion rates at 6 months 
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compared with those treated with teriparatide 
alone.72 Therefore, for patients who are currently 
on denosumab, it is important not to discontinue the 
denosumab prior to surgery. Addition of teriparatide 
for concomitant treatment may be a consideration, 
but the teriparatide should be discontinued first 
before denosumab once the treatment course is com-
pleted. These patients can be complicated to manage, 
so a multidisciplinary approach with an experienced 
bone/osteoporosis team is warranted.

Other popular second- line treatments include 
selective estrogen receptor modulators and romo-
sozumab; however, there is limited clinical evidence 
investigating the use of these agents in the context 
of spinal surgery outcomes, and this is beyond the 
scope of this review. Ultimately, our practice is in 
line with the Congress of Neurological Surgeons’ 
recommendations, which endorse the use of ana-
bolics, such as teriparatide, for preoperative oste-
oporosis treatment with a grade B rating.58 Future 
randomized controlled trials are needed to further 
substantiate this position.

Utility of EOS and Robotics in Perioperative  
Surgical Planning

In addition to improvements in preoperative BMD 
detection and optimization, several new technologies 
have been introduced to facilitate the interpretation of 
patient- specific spinopelvic parameters and surgical 
planning.

Historically, spinopelvic parameters have been 
assessed on standing sagittal and coronal whole- 
spinal radiographs.73 While this method is effec-
tive in assessing spinal malalignment, it is hindered 
by image distortion at the edge of the radiograph 
and poor interobserver reliability.73,74 EOS, a pro-
prietary low- dose biplanar imaging system, offers 
a novel method for assessing spinopelvic param-
eters in the preoperative setting (Figure 3). In 
general, EOS has several advantages over conven-
tional spinal radiographs. Conventional x- ray radi-
ography requires multiple exposures followed by 
stitching of images to generate a full- body image 
(Figure 4C and D; Figure 5D and E). However, EOS 
imaging avoids the need for multiple exposures, 
thereby reducing the examination time, decreas-
ing the overall radiation exposure per examination, 
and eliminating the distortion and stitching arti-
facts seen in conventional radiography.75 Not only 
does the EOS produce distortion- free, high- quality 
images, but it also generates 3D renderings that 

cannot be produced from conventional radiogra-
phy.76 Recent work from Shakeri et al shows that 
spinopelvic parameters measured from EOS films 
are reliable and comparable to those generated by 
traditional radiographs.76

Recent developments in robot- assisted spinal 
surgery have allowed for safer, faster, and more per-
sonalized care.77 The Mazor X and Globus Excel-
sius systems are examples of this technology. They 
incorporate 3- dimensional (3D) analytical soft-
ware as an adjunct to preoperative planning. With 
this software, surgeons can simultaneously inspect 
implant size and trajectory in all 3 planes.78 In an 
updated iteration of this software, the Mazor X and 
ExcelsiusGPS now provide real- time 3D visualiza-
tion in the operative setting as surgeons use instru-
ments and/or place screws along preoperatively 
planned trajectories.77

After surgeons surmount the learning curve, 
robotic planning has been shown to augment opera-
tive efficiency and reduce operative times.79–81

INTRAOPERATIVE SETTING

Technological advances have also changed the land-
scape of the operating room with regard to the cus-
tomization of spinal implants. While neuronavigation 
systems allow for intraoperative planning of screw size 
and trajectories in addition to implant size based on an 
intraoperative CT, 3D printing, and the ability to choose 

Figure 3. A 78- year- old man with a history of prior lumbar laminectomy 
underwent a 2- stage lumbosacral fusion: L3–L5 anterior lumbar interbody 
fusion and L2- pelvic minimally invasive fixation for severe back pain, right leg 
pain, and chronic right foot weakness. (A) Preoperative anteroposterior and 
(B) lateral full spinal imaging generated from an EOS scan, revealing severe 
degenerative changes, spinal stenosis worst at L2–L3 and L3–L4, and scoliosis 
with a significant mismatch between lumbar lordosis and pelvic incidence. 
(C) Postoperative coronal and (D) sagittal full spinal imaging generated from 
EOS showing instrumentation.
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implant materials based on patient- related factors take 
this personalization 1 step further.

Implant Choice

Information derived from preoperative imaging 
can be used to fashion digitally modeled 3D implants. 
Printed implants can cater to the patient’s anatomy 
and biomechanical requirements; their specificity 
allows for minimal removal of surrounding structures 
and preservation of normal anatomy during implanta-
tion.82,83 Moreover, custom implants allow for a more 
even distribution of stress and shearing forces and opti-
mize osteointegration. Additionally, custom implants 

that optimize fit with superior and inferior endplates 
mitigate the need for adding bone grafts, reducing the 
overall surgical time that would have been spent har-
vesting said graft. D’Urso et al were the first to describe 
3D printing for preoperative planning in 1999; the first 
3D printed implant was used in 2014. 3D modeling is 
particularly helpful in spine oncology; tumors irregu-
larly erode and invade adjacent structures, and model-
ing the tumor configuration can help with preoperative 
planning and lead to an overall decrease in operative 
time and blood loss associated with tumor resection 
(Figure 4).84 Moreover, as a result of the invasive nature 
of tumors, tumor resection cavities are often irregularly 

Figure 4. Fifty- two- year old man who underwent a T7 corpectomy with en bloc resection of a grade 2 chondrosarcoma and T5–T9 posterior fusion. This is an 
example of a case in which a custom implant would have been advantageous given the irregular margins of the tumor resection cavity. (A) Preoperative T1- post 
gadolinium magnetic resonance imaging revealed a 1.4 cm bony destructive mass within the T7 vertebral body and left pedicle with expansile component to the 
left paravertebral space and also left epidural component abutting the thoracic cord without cord compression (inset). (B) Postoperative computed tomography 
scan demonstrating an expandable titanium cage flush to the endplates of T6 and T8. (C) and (D) Postoperative stitched standing scoliosis films demonstrating 
anterior and posterior instrumentation.

Figure 5. Sixty- eight- year- old man who underwent posterior C2–T6 fusions extension into prior fusion construct and C2–T2 laminectomy for progressive cervical 
myelopathy status post prior T7 corpectomy and T4–T9 fusion following T6–T7 pathologic fracture secondary to osteomyelitis. (A) Preoperative magnetic resonance 
imaging demonstrating severe stenosis from C2 to T2. (B) Preoperative anteroposterior (AP) and (C) lateral EOS scans demonstrating prior posterior hardware. 
(D) Postoperative AP and (E) lateral stitched scoliosis films highlighting a titanium rod construct spanning C2–T9.
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shaped and an ill fit for standard vertebral prosthetics, 
necessitating custom implants for restoration of load- 
bearing segments.85,86 The use of custom implants has 
been associated with better long- term stability and 
decreased periods of activity restriction after spine 
tumor surgery. Custom implants offer a new solution in 
the operative management of axis tumors since current 
cervical implants are optimized for the subaxial spine 
and have difficulty recapitulating the biomechanics of 
the axis.87,88

Beyond surgical oncology, 3D- printed implants 
can also be useful for congenital deformities. In 
the case of adolescent idiopathic scoliosis, where 
curvature makes it difficult to visualize the optimal 
screw trajectory, a drill guide can be 3D printed 
based on preoperative imaging to lay down on the 
entry point and guide screw placement. In a retro-
spective study of 126 adolescent idiopathic sco-
liosis patients, using a 3D- printed biomodel was 
associated with decreased operative time, blood 
loss, and transfusion volume without an increase 
in postoperative complications or length of stay.89 
Another opportunity would be in the case of con-
genitally abnormally sized pedicles and vertebral 
bodies, such as in achondroplasia. With 3D print-
ing, we are no longer forced to repurpose our exist-
ing implants to accommodate these patients, often 
resulting in a less- than- ideal construct; instead, we 
can offer a customized and well- planned construct.

Materials

The properties of constructs are an essential con-
sideration when deciding which material to use, and 
another important realm is where an individualized 
approach can be taken (Table 1). Most commonly, 
stainless steel (SS), titanium (Ti), cobalt chromium 
(Co- Cr), and polyethylethylketone (PEEK) are used in 

spinal constructs (Figure 5).90 Each material has its own 
set of advantages and indications for use. The appropri-
ateness of each material is typically assessed based on 
its Young’s modulus, tensile strength, fatigue strength, 
and radiopacity.90 In cases of adult spinal deformity 
correction, where it is important to maintain the initial 
correction made, rod material is especially important. 
While Co- Cr and ultrahigh strength SS rods generate 
the greatest corrective forces compared with SS and Ti, 
they come at the cost of greater plastic deformation.91 
Co- Cr multiple- rod constructs also have a higher occur-
rence of proximal junctional kyphosis when compared 
with Ti alloy 2- rod constructs.92 While there are vari-
able reports on breakage between Co- Cr and Ti rods, 
there is no difference in other outcomes, including 
Cobb angle, sagittal vertical axis, pelvic tilt angle, and 
pseudoarthrosis.93

Radiopacity becomes a decision- making factor for 
patients requiring frequent screening or oncological 
treatment. For patients with primary and metastatic 
spinal tumors, carbon- fiber- reinforced (CFR) PEEK 
constructs can be useful for reducing imaging arti-
facts.94 CFR PEEK hardware may also reduce radio-
therapy perturbations while having an 89% fusion 
rate, which is comparable to Ti implants.95 In a com-
parative study with more than 7 years of follow- up 
for multilevel cervical spondylotic myelopathy, PEEK 
cages were found to have lower subsidence rates and 
improved maintenance of intervertebral height and cer-
vical lordosis when compared with Ti.96 A survey con-
ducted by the North American Spine Society section of 
spinal oncology found varied opinions on CFR PEEK. 
Respondents were largely concerned with the high cost 
and low availability, which was reflected in their low 
utilization for anterior and posterior constructs follow-
ing tumor resection.97

Table 1. Summary of implant materials and their applications and characteristics.

Material Young’s Modulus Applications Pros Cons

Ti6A14V 110  z Rods
 z Cages
 z Plates
 z Screws

 z Lightweight
 z Flexible
 z Alloys available

 z Relatively expensive
 z Imaging artifactsTi 50.2

Co- Cr 53.15  z Rods  z High corrective force for scoliosis  z Risk of plastic deformation
 z Risk of PJK
 z High imaging artifacts

Stainless steel 51.07  z Rods  z Inexpensive  z High imaging artifacts
 z Corrosion

CFR PEEK 17.94  z Rods
 z Cages

 z Reduced imaging artifacts  z Low Young’s modulus

Cancellous bone 3.87

Abbreviations: CFR, carbon fiber reinforced; Co- Cr, cobalt chromium; PEEK, polyethylethylketone; PJK, proximal junctional kyphosis; Ti, titanium.
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Material considerations for osteoporotic patients 
warrant special attention due to the increased risk of hard-
ware failure. Screw loosening in osteoporotic patients is 
not entirely understood, but it appears that craniocaudal 
toggling can significantly reduce screw pullout strength 
in osteoporotic vertebrae. It is thought to occur through 
tissue failure around the screw.98 Some approaches 
to improve pullout strength in osteoporotic vertebrae 
include using fenestrated pedicle screws. Compared 
with conventional pedicle screws, fenestrated pedicle 
screws allow for the injection of polymethylmethac-
rylate, calcium phosphate, or hydroxyapatite cement 
into cannulation and out of the fenestrations, thereby 
reducing the risk of screw loosening and improving 
screw fixation and overall fusion rates. Additionally, 
other less commonly used methods of screw fixation 
in osteoporotic vertebrae include using allograft bone 
particles, calcium phosphate cement, or demineralized 
bone matrix. These can be used for pedicle augmenta-
tion and are found to improve the screw- bone interface 
and increase screw pullout force and fatigue load cycle.

Other methods that increase maximum pullout force 
in osteoporotic bone are expandable pedicle screws and 
cortical trajectory screws. Each of these individually 
can increase the maximum pullout force by approxi-
mately 130% compared with unreinforced screws.89,99

Technique

In addition to material choice, there are numer-
ous techniques for contouring rods to patients’ unique 
anatomy. Manual bending can introduce stress and 
strain into rods, which has implications for breakage, 
plastic deformation, and maintenance of correction. For 
adolescent patients with idiopathic scoliosis, notch- free 
prebent rods were found to have higher thoracic kypho-
sis postoperatively compared with those with manually 
bent rods. This was achieved because the notch- free 
prebent rods maintained their curvature better than 
the manually bent rods.100 Several groups have reca-
pitulated these findings in adolescent idiopathic sco-
liosis.101 Beyond demonstrated efficacy in adolescent 
pathology, patient- specific rods have demonstrated sig-
nificant improvement in patient- reported outcomes and 
spinopelvic parameters in adult deformity as well.102–104

Proper rod choice and alignment are also important 
for avoidance of screw pullout. Forcing a rod to fit into 
a tulip head when there is a gap discrepancy signifi-
cantly reduces the pullout strength of the screws.105 
The stress in a construct can also be determined by the 
method of shaping rods. Finite element studies have 
shown that using a French bender induces more stress 

than an in- situ bender. There are currently efforts to use 
machinery to bend rods to patient- specific anatomy. 
They are designed to reduce forces on the screw- bone 
interface compared with freehand bending.106

CT-Guided Navigation

Imaging and navigation enhance the surgeon’s ability 
to understand, verify, and plan surgeries based on their 
patient’s anatomy. Intraoperative CT- guided navigation 
has proven to be an essential tool in the spinal surgeon’s 
armamentarium for adult deformity and degenerative 
pathologies. Placing pedicle screws using the freehand 
technique is challenging due to obscured anatomical 
landmarks, a common issue in deformity correction sur-
geries. CT- guided navigation systems enhance place-
ment accuracy by providing real- time, 3- dimensional 
imaging, which allows for precise localization of ana-
tomical structures. Studies have shown that navigation 
use can improve placement accuracy107–109 and reduce 
pedicle screw placement time and breech rates.110

Whether in the form of C- arm fluoroscopy or CT, 
intraoperative x- rays are vital tools during spine surgery. 
When comparing cone- beam CT and fluoroscopy, 
cone- beam CT has a reduced mean screw placement 
time, operative time, and length of stay. However, it also 
yields a higher total radiation dose. This is an important 
consideration when planning imaging for adolescent 
idiopathic scoliosis: patients younger than 18 being 
treated for a spinal deformity may have an increased 
estimated risk of developing cancer due to the radiation 
they are exposed to during surgical intervention.

POSTOPERATIVE SETTING

Ultimately, patient- reported outcomes and patient 
satisfaction after surgery are contingent upon a host of 
factors independent of the adequacy of their surgical 
construct; as such, surgeons’ planning does not stop as 
soon as the patient leaves the operating room. With an 
improved knowledge of the importance of postoperative 
nutrition and rehabilitation, spine surgeons can work 
with nutritionists and physical therapists to optimize 
these 2 aspects of postoperative recovery and improve 
the chances of maximizing functional outcomes.

Personalized Postoperative Pain Regimens

Pharmacogenomics and Inter-Individual  
Differences in Drug Clearance

For patients undergoing spine surgery, personalized 
pain regimens can serve as an important component 
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in reducing the duration of postoperative pain and 
decreasing opioid dependency. Approximately half of 
the patients indicate continued postoperative pain fol-
lowing back surgery, with nearly 40% of the patients at 
the 6- month postoperative period still reporting the use 
of pain medications.111 These findings suggest the need 
for pain regimens that are tailored to a patient’s spe-
cific characteristics. Over the past 2 decades, pharma-
cogenomics has increasingly offered new insights into 
creating patient- specific pain regimens using genetic 
screening for polymorphisms present in pain- associated 
genes. White and Kehlet discuss how differences at the 
individual level in pain sensitivity can lead to different 
responses to similar painful stimuli such that some indi-
viduals, through genetic differences, can be categorized 
as either low- or high- pain responders.112 Categorizing 
patients into these groups in the preoperative period 
can dictate the quantity and type of pain medications 
in the postoperative period. Indeed, several genes have 
been identified over the years that can serve as possible 
screening targets, with many being investigated in the 
context of spine surgery (Table 2).

Catechol- O- methyltransferase (COMT) is an 
important enzyme involved in metabolizing various 
catecholamine neurotransmitters, such as dopamine, 
epinephrine, and norepinephrine. Polymorphisms in 
this gene have an important role in the context of mod-
ulating pain. Similar to the idea discussed by White and 
Kehlet, COMT is a screening target that can play a role 
in categorizing patients who are more or less suscep-
tible to painful stimuli.112 In a study by Diatchenko et 
al, 3 COMT haplotypes, with primary differences in 
the rate of COMT protein translation, were found to 
be associated with low-, average-, or high- pain sen-
sitivity.115 Those who were homozygous for the low- 
pain sensitivity haplotype had the greatest tolerance 
for different forms of noxious stimuli, while those 
with the high- sensitivity haplotype had the least tol-
erance. In addition to pain sensitivity, polymorphisms 
in the COMT gene have been associated with varia-
tions in the quantity of opioid dosages required to treat 
pain. Rakvåg et al, in a study involving patients with 
cancer- related pain, performed genotyping of 11 single 

nucleotide polymorphisms of the COMT gene to con-
struct COMT haplotypes.114 Patients with the most fre-
quent haplotype required less morphine compared with 
those patients who did not possess these haplotypes to 
treat cancer- related pain. The results of this study not 
only carry implications for patients with malignancies 
in general but can be a topic of further investigation 
in the pre- and postoperative context for patients with 
spinal malignancies.

Focused studies on pharmacogenomics in patients 
with spinal pathologies have been explored in the 
context of both the COMT gene and additional pain- 
related genes. In a recent study by Ernst et al in 2024, 
the genes COMT and Neuropeptide Y (NPY) were 
investigated to determine if polymorphisms in these 
genes are related to symptom severity and treatment 
outcomes in patients with lumbar spinal stenosis.114 
Patients with a specific COMT genotype displayed 
greater severity of symptoms at baseline, while 
patients with a specific NPY genotype displayed 
not only greater baseline symptom severity but also 
better treatment outcomes. Although this study spe-
cifically focused on patients with lumbar spinal ste-
nosis receiving nonoperative treatment modalities, 
the results can possibly be translated toward using 
variations in NPY and COMT in predicting postop-
erative symptom levels in patients with degenera-
tive spinal conditions. Other foundational studies 
have specifically laid the groundwork for the role 
of assessing genetic polymorphisms in operative 
spine cohorts. Tegeder et al found that in patients 
who had undergone discectomy for radicular back 
pain, a specific haplotype in the gene Guanosine 
triphosphate cyclohydrolase 1 was associated with 
decreased pain levels after surgery.118 Similarly, 
a subsequent study focusing on patients under-
going instrumented fusion or disc arthroplasty in 
patients with lumbar degenerative disease demon-
strated that a single nucleotide polymorphism in 
the Guanosine triphosphate cyclohydrolase 1 gene 
was significantly associated with improvement in 
the Oswestry Disability Index score and Numerical 
Rating Scale back pain scores following surgery.116 

Table 2. Overview of pain- associated genes that can be used as screening targets in the context of spine surgery.

Gene Function Example Polymorphism(s) Associated With Pain

Catechol- O- methyltransferase Metabolism of catecholamines (dopamine, 
epinephrine, and norepinephrine)

rs4680 GG (Ernst et al, 2024)113

Val158Met (Rakvåg et al, 2008114; Diatchenko et al, 
2006115)

Neuropeptide Y Neuropeptide implicated in pain modulation rs16147 TT (Ernst et al, 2024)113

Guanosine triphosphate cyclohydrolase 1 Rate- limiting enzyme in the synthesis of 
tetrahydrobiopterin (BH4)

rs998259 (minor allele T) (Kim et al, 2010)116

Opioid Receptor Mu 1 Encodes for the mu opioid receptor Asn118Asp (Lötsch et al, 2004)117
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Through screening patients with this particular 
polymorphism in the preoperative setting, patients 
with lumbar degenerative disc disease or other 
degenerative pathologies of the spine can possibly 
have tailored pain dosages and regimens in associa-
tion with their expected postoperative outcome.

The mu opioid receptor, encoded by the OPRM1 
gene, is also implicated as an important preoper-
ative screening target. The mu opioid receptor is 
the binding site for several opiates, including mor-
phine, methadone, and fentanyl. Polymorphisms in 
the OPRM1 gene are associated with different anal-
gesic effects and dosage requirements to treat pain. 
For example, the single nucleotide polymorphism 
A118G for the OPRM1 gene is associated with not 
only decreased analgesic effects of both morphine 
and morphine metabolites in the laboratory setting 
but also with postoperative pain scores, morphine 
use, and morphine- related side effects. In patients 
with spine pathologies, inter- individual differences 
in the OPRM1 regulatory site have been shown to 
have associations with postoperative pain.117 In a 
study by Chidambaran et al in 2016 of 133 adoles-
cents undergoing spinal fusion for idiopathic scoli-
osis, differences in DNA methylation at methylation 
sites of the OPRM1 gene promoter were found to be 
associated with preoperative pain measures along 
with the development of acute and chronic postsur-
gical pain.119

Other important factors for optimal personalized 
pain regimens for patients undergoing spine surgery 
include individual differences in drug clearance. 
For example, polymorphisms in drug efflux pumps 
are associated with differences in the development 
of morphine- related side effects and, therefore, 
serve as additional screening targets for determin-
ing optimal dosage requirements in the postopera-
tive setting.120 Finally, outside of genetic screening, 
concomitant medications being taken alongside 
pain medications should be carefully reviewed for 
possible drug- drug interactions.121 Morphine, when 
used alongside other drugs that interfere with mor-
phine metabolism, can result in either potentiated 
side effects or a reduced therapeutic effect.

AI Tools for Predicting Postoperative Pain

Artificial intelligence (AI) prediction tools, 
including machine- learning models, are import-
ant for assessing which patients are more likely to 
develop postoperative pain and opioid dependency 
following surgery based on preoperative clinical, 

radiographic, and genetic variables. In a Quality 
Outcomes Database study by Park et al, machine- 
learning models were implemented to determine 
the likelihood a patient with cervical spondylotic 
myelopathy will achieve a clinically meaningful 
improvement in neck pain following surgery.122 
Similarly, in a study performed using the Norwe-
gian Registry for Spine Surgery, machine- learning 
models were trained on over 20,000 patients with 
surgery for lumbar disc herniation to determine 
treatment success with respect to a range of postop-
erative pain measures.123 Through using machine- 
learning models and AI- powered calculators, 
patients with spinal pathologies who are at greater 
risk of not developing significant improvement in 
pain can be screened for in the preoperative setting 
for more aggressive follow- up in the postoperative 
setting for optimized pain control and additional 
therapeutic interventions.

Machine learning in the preoperative setting has 
also shown promise in determining patients who 
are at high risk of needing an extended duration of 
postoperative opioid medications after lumbar disc 
herniation surgery.124 Patients who are predicted to 
have greater postoperative opioid needs following 
surgery can undergo greater surveillance to ensure 
that pain needs are being met adequately without 
the need for an extended duration. AI prediction 
tools are, therefore, valuable for screening patients 
with a greater need for postoperative pain control. 
Through future incorporation of a patient’s specific 
genetic polymorphisms and preoperative radio-
graphic features, AI models can potentially offer 
high prediction accuracy for patients who are at the 
highest risk of postoperative pain.

Personalized Physical and Nutritional Therapy in 
the Postoperative Period

Postoperative rehabilitation approaches opti-
mized to a patient’s particular characteristics have 
the opportunity to improve functional outcomes in 
patients following spine surgery. Several prior studies 
have demonstrated the importance of a personalized 
rehabilitation approach as opposed to standardized 
rehabilitation methods. Millisdotter et al performed 
a study comparing the performance of a neuromus-
cular customized training program with a traditional 
rehabilitation approach following lumbar disc hernia-
tion.125 At 12 months surgery, patients who underwent 
the customized approach had improved disability 
levels compared with those patients who underwent 
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the traditional approach. A personalized physical 
rehabilitation approach should additionally be sup-
plemented with approaches emphasizing biopsycho-
social domains. Prior studies have demonstrated the 
importance of addressing these domains in patients 
undergoing spine surgery. For example, in a study 
of patients undergoing lumbar fusion, the postoper-
ative recovery trajectory was found to be also deter-
mined by biopsychosocial factors such as depression, 
anxiety, and fatigue.126 Similarly, for patients under-
going spinal cord stimulation surgery, a personal-
ized biopsychosocial rehabilitation program can 
potentially offer improved postoperative outcomes 
in areas such as functional disability, quality of life, 
and return to work.127 Adequately screening for these 
factors prior to surgery and ensuring that a patient’s 
biopsychosocial needs are being met postoperatively 
are important, given the complex interplay of these 
factors with surgical outcomes.

Health- related technologies are additionally 
important during the postoperative period for mon-
itoring patients who need earlier postoperative care. 
Such technologies offer the capability of custom-
ized follow- up times following spine surgery as 
opposed to standardized postoperative follow- ups. 
Prior to surgery, AI tools offer the potential capa-
bility to predict patients at greater risk of functional 
deterioration postoperatively. In a study by DeVries 
et al, machine learning was used to predict ambula-
tory activity in patients following spinal cord injury 
surgery with relatively good accuracy.128 Those 
patients who were predicted to develop poor ambu-
latory status could, therefore, undergo more aggres-
sive postoperative monitoring and physical therapy. 
Similar models can be developed to predict func-
tional outcomes in patients with other pathologies of 
the spine.

In addition to preoperative tools, mobile digital 
platforms and wearable devices are possible avenues 
for close postoperative monitoring. Patient- reported 
outcome measures can be supplemented with objec-
tive data points from these digital health technolo-
gies to gain insight into the postoperative recovery 
trajectory. Ambulatory activity, tracked by measuring 
step counts using smartphones, serves as an objective 
metric to track changes in functional activity follow-
ing spine surgery.129 Furthermore, wearable devices, 
such as the tri- axis accelerometer, provide informa-
tion into additional parameters beyond step count, 
such as cadence and posture. Patients with a slower 
than anticipated improvement in ambulatory activity 

can have shortened follow- up times to analyze for 
new deficits or a need for a more aggressive phys-
ical rehabilitation. Mobile health applications allow 
not only activity monitoring but also monitoring of 
wound healing, pain management, and new deficits 
reported by a patient.130 Other technologies include 
wearable cameras that allow for the measurement of 
functional limb usage, thereby allowing for monitor-
ing of neurorehabilitation progress.131

Outside of customized physical therapy and patient- 
specific activity monitoring, optimizing a patient’s 
nutritional status relative to their baseline frailty 
plays an important role in the postoperative surgical 
course. Screening for patients with poor nutritional 
status includes tools such as the Nutritional Risk 
Score and measurements of body mass index, sarco-
penia, and other metabolic markers of frailty, such as 
albumin, which has been shown to be an independent 
predictor of postoperative complications after certain 
types of spine surgery.132,133 In a study by Rigney et 
al, patients who underwent surgery for metastatic 
spinal tumors and who received a nutrition consul-
tation preoperatively were less likely to develop 
complications related to wound healing during the 
postoperative course.134 Additionally, those patients 
who were determined to have a normal nutritional 
status at baseline were more likely to have improved 
survival following surgery. Similarly, in a study by 
Elsamadicy et al, patients with poor nutritional status 
and who underwent lumbar fusion for spondylolis-
thesis had greater rates of readmissions, length of 
stay, and adverse events such as pneumonia and skin/
soft tissue infections.135 Optimizing a patient’s nutri-
tional status based on their specific nutritional needs 
is therefore important prior to surgery with continued 
optimization postoperatively.133

CONCLUSION

Evolving technologies and a deeper understanding 
of patient- specific factors have changed the landscape 
of spine surgery. By working in a multidisciplinary 
fashion with other health care providers, including 
but not limited to radiologists, endocrinologists, 
nutritionists, and physical therapists, spine surgeons 
can avail themselves of personalized, precision care 
and tailor each stage of the surgical pathway to the 
individual patient.

In this review, we described some ways to do so, 
from the initial clinic visit to the ultimate rehabilita-
tion. BMD should first be assessed with DEXA scans, 
with complementary information gleaned from TBS 
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or FRAX scores. In collaboration with endocrinol-
ogy, preoperative optimization of BMD is essential 
to mitigate the risks of osteoporosis- related compli-
cations, thereby improving surgical outcomes. Addi-
tionally, the intraoperative setting has seen significant 
advancements with the customization of implants. 
The use of 3D printing technology enables the cre-
ation of implants tailored to the patient’s unique 
anatomical and biomechanical needs, enhancing the 
fit and functionality of the surgical constructs. Fur-
thermore, the integration of cutting- edge technolo-
gies such as EOS imaging and robot- assisted surgery 
has improved the precision and efficiency of surgical 
interventions. These technologies facilitate accurate 
assessment of spinopelvic parameters and allow for 
meticulous preoperative planning and intraopera-
tive execution. Equally important is the emphasis on 
postoperative care, where personalized pain manage-
ment regimens, increasingly informed by pharma-
cogenomic and AI insights, as well as individualized 
physical and nutritional therapy plans, created with 
nutritionists and physical therapists, are crucial for 
optimizing recovery and functional outcomes.

By focusing on these critical factors, spine surgeons 
can significantly enhance patient care and outcomes 
through a personalized, patient- centric approach 
to spine surgery. This comprehensive, tailored care 
ensures that each patient receives optimal treatment 
throughout their surgical journey, ultimately leading 
to improved overall health and well- being.
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