Skip to main content
Log in

The role of prosthesis design on segmental biomechanics

Semi-constrained versus unconstrained prostheses and anterior versus posterior centre of rotation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the influence of different implant designs of total lumbar disc replacements on the segmental biomechanics of the lumbar spine. The unconstrained Charité, the semi-constrained Prodisc and a semi-constrained Prototype with more posterior centre of rotation than the Prodisc were tested in vitro using six human, lumbar spines L2–L5. The segmental lordosis was measured on plain radiographs and the range of motion (ROM) for all six degrees of freedom with a previously described spine tester. All prostheses were implanted at level L3–L4. Compared with the intact status all prostheses resulted in a significant increase of segmental lordosis (intact 5.1°; Charité 10.6°, p = 0.028; Prodisc 9.5°, p = 0.027; Prototype 8.9°, p = 0.028), significant increase of flexion/extension (intact 6.4°, Charité 11.3°, Prodisc 12.2°, Prototype 12.2°) and axial rotation (intact 1.3°, Charité 5.4°, Prodisc 3.9°, Prototype 4.2°). Lateral bending increased significantly only for the Charité (intact 7.7°; Charité 11.6°, p = 0.028; Prodisc 9.6°, Prototype 9.8°). The segmental lordosis after Prototype implantation was significantly lower compared with Charité (p = 0.024) and Prodisc (p = 0.044). No significant difference could be observed for segmental lordosis between Charité and Prodisc and for ROM between the two semi-constrained prosthesis Prodisc and Prototype. The axial rotation for the unconstrained Charité was significantly higher than for the semi-constrained prosthesis Prodisc and Prototype, flexion/extension and lateral bending did not differ. Summarizing, the unconstrained prosthesis design increased segmental lordosis and showed a tendency towards higher ROM for axial rotation/lateral bending and lower ROM for flexion/extension than a semi-constrained prosthesis. A more anterior centre of rotation in a semi-constrained prosthesis resulted in a higher increase of segmental lordosis after TDR than a semi-constrained prosthesis with more posterior centre of rotation. The location of the centre of rotation in a semi-constrained prosthesis did not alter the magnitude of ROM. Despite the different alterations of ROM and segmental lordosis due to implant design, these differences were negligible compared with the overall increase of ROM and segmental lordosis by the implantation of a TDR compared with the physiologic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  CAS  Google Scholar 

  2. Cakir B, Richter M, Kafer W, Puhl W, Schmidt R (2005) The impact of total lumbar disc replacement on segmental and total lumbar lordosis. Clin Biomech (Bristol, Avon) 20:357–364

    Article  Google Scholar 

  3. Cakir B, Schmidt R, Huch K, Puhl W, Richter M (2004) Sagittal alignment and segmental range of motion after total disc replacement of the lumbar spine. Z Orthop Ihre Grenzgeb 142:159–165

    Article  PubMed  CAS  Google Scholar 

  4. Chung SK, Kim YE, Wang KC (2009) Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Spine 34:1281–1286

    Article  PubMed  Google Scholar 

  5. Cunningham BW, Gordon JD, Dmitriev AE, Hu N, McAfee PC (2003) Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Spine 28:S110–S117

    Article  PubMed  Google Scholar 

  6. Dabbs VM, Dabbs LG (1990) Correlation between disc height narrowing and low-back pain. Spine 15:1366–1369

    Article  PubMed  CAS  Google Scholar 

  7. Dooris AP, Goel VK, Grosland NM, Gilbertson LG, Wilder DG (2001) Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 26:E122–E129

    Article  PubMed  CAS  Google Scholar 

  8. Fujiwara A, Lim TH, An HS, Tanaka N, Jeon CH, Andersson GB, Haughton VM (2000) The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 25:3036–3044

    Article  PubMed  CAS  Google Scholar 

  9. Hopf C, Heeckt H, Beske C (2002) Disc replacement with the SB Charite endoposthesis—experience, preliminary results and comments after 35 prospectively performed operations. Z Orthop Ihre Grenzgeb 140:485–491

    Article  PubMed  CAS  Google Scholar 

  10. Huang RC, Girardi FP, Cammisa FP Jr, Lim MR, Tropiano P, Marnay T (2005) Correlation between range of motion and outcome after lumbar total disc replacement: 8.6-year follow-up. Spine 30:1407–1411

    Article  PubMed  Google Scholar 

  11. Huang RC, Girardi FP, Cammisa FP Jr, Wright TM (2003) The implications of constraint in lumbar total disc replacement. J Spinal Disord Tech 16:412–417

    Article  PubMed  Google Scholar 

  12. Huang RC, Girardi FP, Cammisa FP Jr, Tropiano P, Marnay T (2003) Long-term flexion–extension range of motion of the prodisc total disc replacement. J Spinal Disord Tech 16:435–440

    Article  PubMed  Google Scholar 

  13. Huang RC, Tropiano P, Marnay T, Girardi FP, Lim MR, Cammisa FP Jr (2006) Range of motion and adjacent level degeneration after lumbar total disc replacement. Spine J 6:242–247

    Article  PubMed  Google Scholar 

  14. Kafer W, Clessienne CB, Daxle M, Kocak T, Reichel H, Cakir B (2008) Posterior component impingement after lumbar total disc replacement: a radiographic analysis of 66 ProDisc-L prostheses in 56 patients. Spine 33:2444–2449

    Article  PubMed  Google Scholar 

  15. La Grone MO (1988) Loss of lumbar lordosis. A complication of spinal fusion for scoliosis. Orthop Clin North Am 19:383–393

    PubMed  CAS  Google Scholar 

  16. Le Huec J, Basso Y, Mathews H, Mehbod A, Aunoble S, Friesem T, Zdeblick T (2005) The effect of single-level, total disc arthroplasty on sagittal balance parameters: a prospective study. Eur Spine J 14:480–486

    Article  PubMed  Google Scholar 

  17. Lemaire JP, Skalli W, Lavaste F, Templier A, Mendes F, Diop A, Sauty V, Laloux E (1997) Intervertebral disc prosthesis. Results and prospects for the year 2000. Clin Orthop Relat Res 337:64–76

    Article  PubMed  Google Scholar 

  18. Liu J, Ebraheim NA, Haman SP, Shafiq Q, Karkare N, Biyani A, Goel VK, Woldenberg L (2006) Effect of the increase in the height of lumbar disc space on facet joint articulation area in sagittal plane. Spine 31:E198–E202

    Article  PubMed  Google Scholar 

  19. Myklebust JB, Pintar F, Yoganandan N, Cusick JF, Maiman D, Myers TJ, Sances A Jr (1988) Tensile strength of spinal ligaments. Spine 13:526–531

    Article  PubMed  CAS  Google Scholar 

  20. Panjabi MM, Goel VK, Takata K (1982) Physiologic strains in the lumbar spinal ligaments. An in vitro biomechanical study 1981 Volvo Award in biomechanics. Spine 7:192–203

    Article  PubMed  CAS  Google Scholar 

  21. Rohlmann A, Zander T, Bergmann G (2005) Effect of total disc replacement with ProDisc on intersegmental rotation of the lumbar spine. Spine 30:738–743

    Article  PubMed  Google Scholar 

  22. Schendel MJ, Wood KB, Buttermann GR, Lewis JL, Ogilvie JW (1993) Experimental measurement of ligament force, facet force, and segment motion in the human lumbar spine. J Biomech 26:427–438

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt H, Midderhoff S, Adkins K, Wilke HJ (2009) The effect of different design concepts in lumbar total disc arthroplasty on the range of motion, facet joint forces and instantaneous center of rotation of a L4–5 segment. Eur Spine J 18:1695–1705

    Article  PubMed  Google Scholar 

  24. Shufflebarger HL, Clark CE (1992) Thoracolumbar osteotomy for postsurgical sagittal imbalance. Spine 17:S287–S290

    Article  PubMed  CAS  Google Scholar 

  25. Tournier C, Aunoble S, Le Huec JC, Lemaire JP, Tropiano P, Lafage V, Skalli W (2007) Total disc arthroplasty: consequences for sagittal balance and lumbar spine movement. Eur Spine J 16:411–421

    Article  PubMed  CAS  Google Scholar 

  26. Weisskopf M, Ohnsorge JA, Martini F, Niethard FU, Birnbaum K (2008) Influence of inlay height on motion characteristics of lumbar segments in total disc replacement. Z Orthop Unfall 146:452–457

    Article  PubMed  CAS  Google Scholar 

  27. Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97

    Article  PubMed  CAS  Google Scholar 

  28. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154

    Article  PubMed  CAS  Google Scholar 

  29. Zander T, Rohlmann A, Bergmann G (2009) Influence of different artificial disc kinematics on spine biomechanics. Clin Biomech (Bristol, Avon) 24:135–142

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by Ulrich medical, Ulm, Germany. This work was approved by the Research Ethics Committee.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Wilke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilke, HJ., Schmidt, R., Richter, M. et al. The role of prosthesis design on segmental biomechanics. Eur Spine J 21 (Suppl 5), 577–584 (2012). https://doi.org/10.1007/s00586-010-1552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1552-1

Keywords

Navigation