Skip to main content

Advertisement

Log in

Comparative radiological outcomes and complications of sacral-2-alar iliac screw versus iliac screw for sacropelvic fixation

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To compare the outcomes of sacropelvic fixation (SPF) using sacral-2-alar iliac (S2AI) screw with SPF using iliac screw (IS).

Methods

A comprehensive search of PubMed, EMBASE, Cochrane Central Register of Controlled Trials and Scopus was performed for comparative studies between S2AI and IS for SPF. Two independent investigators selected qualified studies and extracted data indispensably. With 95% confidence intervals (CI), the odds ratio (OR) was applied to dichotomous outcomes and standardized mean difference (SMD) was applied to continuous outcomes for each item.

Results

We included data from thirteen studies involving 722 patients (S2AI, 357 patients; IS, 365 patients). In the pediatric population, the S2AI group had a smaller pelvic obliquity (PO) than the IS group at final follow-up (SMD, − 0.38; 95% CI, − 0.72 to − 0.04). Patients who underwent S2AI screws showed reduced rates of re-operation (S2AI, 13%; IS, 28%), implant failure (S2AI, 12%; IS, 26%) [screw loosening (S2AI, 8%; IS, 20%); screw breakage (S2AI, 2%; IS, 12%)], implant prominence (S2AI, 2%; IS, 14%), pseudarthrosis (S2AI, 3%; IS, 15%), wound infection (S2AI, 8%; IS, 22%) and less blood loss (S2AI, 2035.4 ml; IS, 2708.4 ml).

Conclusion

Radiological outcomes indicate an effective maintenance of the correction and arrest of progression of deformity by S2AI, which is equal or better than IS. SPF with S2AI screw has obviously lower incidence of postoperative complications and less blood loss. Given these advantages, the S2AI screw seems to be a beneficial alternative to IS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Jain A, Hassanzadeh H, Strike SA, Menga EN, Sponseller PD, Kebaish KM (2015) Pelvic fixation in adult and pediatric spine surgery: historical perspective, indications, and techniques: AAOS exhibit selection. J Bone Joint Surg Am 97(18):1521–1528. https://doi.org/10.2106/jbjs.O.00576

    Article  PubMed  Google Scholar 

  2. Hsieh PC, Mummaneni PV (2016) Introduction to lumbosacral and sacropelvic fixation strategies. Neurosurg Focus. https://doi.org/10.3171/2016.2.FocusVid.Intro

    Article  PubMed  Google Scholar 

  3. Perra JH (1994) Techniques of instrumentation in long fusions to the sacrum. Orthop Clin North Am 25(2):287–299

    Article  CAS  PubMed  Google Scholar 

  4. Balderston RA, Winter RB, Moe JH, Bradford DS, Lonstein JE (1986) Fusion to the sacrum for nonparalytic scoliosis in the adult. Spine (Phila Pa 1976) 11(8):824–829. https://doi.org/10.1097/00007632-198610000-00017

    Article  CAS  PubMed  Google Scholar 

  5. Lombardi JM, Shillingford JN, Lenke LG, Lehman RA (2018) Sacropelvic fixation: when, why, how? Neurosurg Clin N Am 29(3):389–397. https://doi.org/10.1016/j.nec.2018.02.001

    Article  PubMed  Google Scholar 

  6. Sponseller PD, Zimmerman RM, Ko PS, Pull Ter Gunne AF, Mohamed AS, Chang TL, Kebaish KM (2010) Low profile pelvic fixation with the sacral alar iliac technique in the pediatric population improves results at two-year minimum follow-up. Spine (Phila Pa 1976) 35(20):1887–1892. https://doi.org/10.1097/BRS.0b013e3181e03881

    Article  PubMed  Google Scholar 

  7. Kebaish KM (2010) Sacropelvic fixation: techniques and complications. Spine (Phila Pa 1976) 35(25):2245–2251. https://doi.org/10.1097/BRS.0b013e3181f5cfae

    Article  PubMed  Google Scholar 

  8. McDowell MM, Tempel ZJ, Gandhoke GS, Khattar NK, Hamilton DK, Kanter AS, Okonkwo DO (2017) Evolution of sagittal imbalance following corrective surgery for sagittal plane deformity. Neurosurgery 81(1):129–134. https://doi.org/10.1093/neuros/nyx145

    Article  PubMed  Google Scholar 

  9. Thomas D, Bachy M, Courvoisier A, Dubory A, Bouloussa H, Vialle R (2015) Progressive restoration of spinal sagittal balance after surgical correction of lumbosacral spondylolisthesis before skeletal maturity. J Neurosurg Spine 22(3):294–300. https://doi.org/10.3171/2014.9.Spine1412

    Article  PubMed  Google Scholar 

  10. Shah AA, Lemans JV, Zavatsky J, Agarwal A, Kruyt MC, Matsumoto K, Serhan H, Agarwal AK, Goel V (2019) Spinal balance/alignment - clinical relevance and biomechanics. J Biomech Eng. https://doi.org/10.1115/1.4043650

    Article  PubMed  Google Scholar 

  11. Yin J, Ma X, Lin T, Gao R, Zhou X (2020) Characteristics and treatment of dynamic sagittal imbalance in adult spinal deformity. Eur Spine J. https://doi.org/10.1007/s00586-020-06459-8

    Article  PubMed  Google Scholar 

  12. Lee JH, Kim KT, Lee SH, Kang KC, Oh HS, Kim YJ, Jung H (2016) Overcorrection of lumbar lordosis for adult spinal deformity with sagittal imbalance: comparison of radiographic outcomes between overcorrection and undercorrection. Eur Spine J 25(8):2668–2675. https://doi.org/10.1007/s00586-016-4441-4

    Article  PubMed  Google Scholar 

  13. Matsumoto T, Okuda S, Maeno T, Yamashita T, Yamasaki R, Sugiura T, Iwasaki M (2017) Spinopelvic sagittal imbalance as a risk factor for adjacent-segment disease after single-segment posterior lumbar interbody fusion. J Neurosurg Spine 26(4):435–440. https://doi.org/10.3171/2016.9.Spine16232

    Article  PubMed  Google Scholar 

  14. Yang C, Wei X, Zhang J, Wu D, Zhao Y, Wang C, Zhu X, He S, Li M (2012) All-pedicle-screw versus hybrid hook-screw instrumentation for posterior spinal correction surgery in adolescent idiopathic scoliosis: a curve flexibility matched-pair study. Arch Orthop Trauma Surg 132(5):633–639. https://doi.org/10.1007/s00402-011-1454-7

    Article  PubMed  Google Scholar 

  15. Palmisani M, Dema E, Cervellati S, Palmisani R (2018) Hybrid constructs pedicle screw with apical sublaminar bands versus pedicle screws only for surgical correction of adolescent idiopathic scoliosis. Eur Spine J 27(Suppl 2):150–156. https://doi.org/10.1007/s00586-018-5625-x

    Article  PubMed  Google Scholar 

  16. Crostelli M, Mazza O, Mariani M, Mascello D, Iorio C (2018) Adolescent idiopathic scoliosis correction by instrumented vertebral arthrodesis with autologous bone graft from local harvesting without bone substitute use: results with mean 3 year follow-up. Eur Spine J 27(Suppl 2):175–181. https://doi.org/10.1007/s00586-018-5597-x

    Article  PubMed  Google Scholar 

  17. Li J, Hu Z, Tseng C, Zhao Z, Yuan Y, Zhu Z, Qiu Y, Liu Z (2019) Radiographic and clinical outcomes of surgical correction of poliomyelitis-related spinal deformities: a comparison among three types of pelvic instrumentations. World Neurosurg 122:e1111–e1119. https://doi.org/10.1016/j.wneu.2018.10.238

    Article  PubMed  Google Scholar 

  18. Liu Z, Tseng CC, Zhao ZH, Li J, Wang B, Yu Y, Qian BP, Sun X, Qiu Y, Zhu ZZ (2018) comparison of clinical outcome between utilized second sacral alar-iliac and iliac screw on kyphoscoliosis patients. Zhonghua Wai Ke Za Zhi 56(2):139–146. https://doi.org/10.3760/cma.j.issn.0529-5815.2018.02.012

    Article  CAS  PubMed  Google Scholar 

  19. Ishida W, Elder BD, Holmes C, Lo SFL, Goodwin CR, Kosztowski TA, Bydon A, Gokaslan ZL, Wolinsky JP, Sciubba DM, Witham TF (2017) Comparison between s2-alar-iliac screw fixation and iliac screw fixation in adult deformity surgery: reoperation rates and spinopelvic parameters. Global Spine J 7(7):672–680. https://doi.org/10.1177/2192568217700111

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abousamra O, Sullivan BT, Samdani AF, Yaszay B, Cahill PJ, Newton PO, Sponseller PD (2019) Three methods of pelvic fixation for scoliosis in children with cerebral palsy: Differences at 5-year follow-up. Spine 44(1):E19–E25. https://doi.org/10.1097/BRS.0000000000002761

    Article  PubMed  Google Scholar 

  21. Keorochana G, Arirachakaran A, Setrkraising K, Kongtharvonskul J (2019) Comparison of complications and revisions after sacral 2 alar iliac screw and iliac screw fixation for sacropelvic fixation in pediatric and adult populations: systematic review and meta-analysis. World Neurosurg. https://doi.org/10.1016/j.wneu.2019.08.104

    Article  PubMed  Google Scholar 

  22. Hasan MY, Liu G, Wong HK, Hao TJ (2019) Post-operative complications of s2ai versus iliac screw in spinopelvic fixation: a meta-analysis and recent trends review. Spine J. https://doi.org/10.1016/j.spinee.2019.11.014

    Article  PubMed  Google Scholar 

  23. Riemann BL, Lininger M (2015) Statistical primer for athletic trainers: the difference between statistical and clinical meaningfulness. J Athl Train 50(12):1223–1225. https://doi.org/10.4085/1062-6050-51.1.04

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brignardello-Petersen R, Carrasco-Labra A, Shah P, Azarpazhooh A (2013) A practitioner’s guide to developing critical appraisal skills: what is the difference between clinical and statistical significance? J Am Dent Assoc 144(7):780–786. https://doi.org/10.14219/jada.archive.2013.0187

    Article  PubMed  Google Scholar 

  25. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, Tierney JF (2015) Preferred reporting items for systematic review and meta-analyses of individual participant data: the prisma-ipd statement. JAMA 313(16):1657–1665. https://doi.org/10.1001/jama.2015.3656

    Article  PubMed  Google Scholar 

  26. Dayer R, Ouellet JA, Saran N (2012) Pelvic fixation for neuromuscular scoliosis deformity correction. Curr Rev Musculoskelet Med 5(2):91–101. https://doi.org/10.1007/s12178-012-9122-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Osebold WR, Mayfield JK, Winter RB, Moe JH (1982) Surgical treatment of paralytic scoliosis associated with myelomeningocele. J Bone Joint Surg Am 64(6):841–856

    Article  CAS  PubMed  Google Scholar 

  28. Griffin A, Kenny IC, Comyns TM, Lyons M (2020) The association between the acute: chronic workload ratio and injury and its application in team sports: a systematic review. Sports Med 50(3):561–580. https://doi.org/10.1007/s40279-019-01218-2

    Article  PubMed  Google Scholar 

  29. Cottrill E, Margalit A, Brucker C, Sponseller PD (2019) Comparison of sacral-alar-iliac and iliac-only methods of pelvic fixation in early-onset scoliosis at 5.8 years’ mean follow-up. Spine Deform 7(2):364–370. https://doi.org/10.1016/j.jspd.2018.08.007

    Article  PubMed  Google Scholar 

  30. Nazemi AK, Gowd AK, Vaccaro AR, Carmouche JJ, Behrend CJ (2018) Unilateral s2 alar-iliac screws for spinopelvic fixation. Surg Neurol Int 9:75. https://doi.org/10.4103/sni.sni_460_17

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee MC, Jarvis C, Solomito MJ, Thomson JD (2018) Comparison of s2-alar and traditional iliac screw pelvic fixation for pediatric neuromuscular deformity. Spine J 18(4):648–654. https://doi.org/10.1016/j.spinee.2017.08.253

    Article  PubMed  Google Scholar 

  32. Shabtai L, Andras LM, Portman M, Harris LR, Choi PD, Tolo VT, Skaggs DL (2017) Sacral alar iliac (sai) screws fail 75% less frequently than iliac screws in neuromuscular scoliosis. J Pediatr Orthop 37(8):e470–e475. https://doi.org/10.1097/bpo.0000000000000720

    Article  PubMed  Google Scholar 

  33. Ishida W, Elder BD, Lo SFL, Holmes C, Goodwin CR, Bydon A, Sciubba DM, Witham TF (2016) S2-alar-iliac screwswere associated with a lower rate of symptomatic screw prominence than iliac screws: radiographical analysis on the minimal distance from a screw head to skin. Spine Journal 16(10):S270–S271. https://doi.org/10.1016/j.spinee.2016.07.372

    Article  Google Scholar 

  34. Abousamra O, Nishnianidze T, Rogers KJ, Bayhan IA, Yorgova P, Shah SA (2016) Correction of pelvic obliquity after spinopelvic fixation in children with cerebral palsy: a comparison study with minimum two-year follow-up. Spine Deform 4(3):217–224. https://doi.org/10.1016/j.jspd.2015.11.001

    Article  PubMed  Google Scholar 

  35. Mazur MD, Ravindra VM, Schmidt MH, Brodke DS, Lawrence BD, Riva-Cambrin J, Dailey AT (2015) Unplanned reoperation after lumbopelvic fixation with s-2 alar-iliac screws or iliac bolts. J Neurosurg Spine 23(1):67–76. https://doi.org/10.3171/2014.10.Spine14541

    Article  PubMed  Google Scholar 

  36. Guler UO, Cetin E, Yaman O, Pellise F, Casademut AV, Sabat MD, Alanay A, Grueso FS, Acaroglu E (2015) Sacropelvic fixation in adult spinal deformity (asd); a very high rate of mechanical failure. Eur Spine J 24(5):1085–1091. https://doi.org/10.1007/s00586-014-3615-1

    Article  PubMed  Google Scholar 

  37. Ilyas H, Place HM, Puryear A (2014) A comparison of early clinical and radiographic complications of iliac screw fixation versus s2 alar iliac (s2ai) fixation in the adult and pediatric populations. Spine J 14(11):S83. https://doi.org/10.1016/j.spinee.2014.08.212

    Article  Google Scholar 

  38. Hoernschemeyer DG, Pashuck TD, Pfeiffer FM (2017) Analysis of the s2 alar-iliac screw as compared with the traditional iliac screw: does it increase stability with sacroiliac fixation of the spine? Spine J 17(6):875–879. https://doi.org/10.1016/j.spinee.2017.02.001

    Article  PubMed  Google Scholar 

  39. Chang TL, Sponseller PD, Kebaish KM, Fishman EK (2009) Low profile pelvic fixation: anatomic parameters for sacral alar-iliac fixation versus traditional iliac fixation. Spine (Phila Pa 1976) 34(5):436–440. https://doi.org/10.1097/BRS.0b013e318194128c

    Article  PubMed  Google Scholar 

  40. O’Brien JR, Yu W, Kaufman BE, Bucklen B, Salloum K, Khalil S, Gudipally M (2013) Biomechanical evaluation of s2 alar-iliac screws: effect of length and quad-cortical purchase as compared with iliac fixation. Spine (Phila Pa 1976) 38(20):E1250-1255. https://doi.org/10.1097/BRS.0b013e31829e17ff

    Article  PubMed  Google Scholar 

  41. Burns CB, Dua K, Trasolini NA, Komatsu DE, Barsi JM (2016) Biomechanical comparison of spinopelvic fixation constructs: iliac screw versus s2-alar-iliac screw. Spine Deform 4(1):10–15. https://doi.org/10.1016/j.jspd.2015.07.008

    Article  PubMed  Google Scholar 

  42. Shen ZH, Wang K, Chen D, Zheng XQ, Huang JF, Wu AM (2019) Morphometric characteristics of sacral-2 alar iliac screw fixation in pediatric population. Spine 44(10):E571-e578. https://doi.org/10.1097/brs.0000000000002916

    Article  PubMed  Google Scholar 

  43. Shin JK, Lim BY, Goh TS, Son SM, Kim HS, Lee JS, Lee CS (2018) Effect of the screw type (s2-alar-iliac and iliac), screw length, and screw head angle on the risk of screw and adjacent bone failures after a spinopelvic fixation technique: a finite element analysis. PLoS One 13(8):e0201801

    Article  PubMed  PubMed Central  Google Scholar 

  44. Casaroli G, Galbusera F, Chande R, Lindsey D, Mesiwala A, Yerby S, Brayda-Bruno M (2019) Evaluation of iliac screw, s2 alar-iliac screw and laterally placed triangular titanium implants for sacropelvic fixation in combination with posterior lumbar instrumentation: a finite element study. Eur Spine J 28(7):1724–1732. https://doi.org/10.1007/s00586-019-06006-0

    Article  PubMed  Google Scholar 

  45. Thompson WA, Ralston EL (1949) Pseudarthrosis following spine fusion. J Bone Joint Surg Am 31(2):400–405

    Article  Google Scholar 

  46. Shillingford JN, Laratta JL, Tan LA, Sarpong NO, Lin JD, Fischer CR, Lehman RA Jr, Kim YJ, Lenke LG (2018) The free-hand technique for s2-alar-iliac screw placement: a safe and effective method for sacropelvic fixation in adult spinal deformity. J Bone Joint Surg Am 100(4):334–342. https://doi.org/10.2106/jbjs.17.00052

    Article  PubMed  Google Scholar 

  47. O’Brien JR, Matteini L, Yu WD, Kebaish KM (2010) Feasibility of minimally invasive sacropelvic fixation: percutaneous s2 alar iliac fixation. Spine (Phila Pa 1976) 35(4):460–464. https://doi.org/10.1097/BRS.0b013e3181b95dca

    Article  PubMed  Google Scholar 

  48. Ahmed SI, Bastrom TP, Yaszay B, Newton PO (2017) 5-year reoperation risk and causes for revision after idiopathic scoliosis surgery. Spine (Phila Pa 1976) 42(13):999–1005. https://doi.org/10.1097/brs.0000000000001968

    Article  PubMed  Google Scholar 

  49. Liu G, Hasan MY, Wong HK (2018) Subcrestal iliac-screw: A technical note describing a free hand, in-line, low profile iliac screw insertion technique to avoid side-connector use and reduce implant complications. Spine 3(2):E68-e74. https://doi.org/10.1097/brs.0000000000002239 (Phila Pa 1976)

    Article  Google Scholar 

  50. Shillingford JN, Laratta JL, Park PJ, Lombardi JM, Tuchman A, Saifi C, Lehman RA Jr, Lenke LG (2018) Human versus robot: a propensity-matched analysis of the accuracy of free hand versus robotic guidance for placement of s2 alar-iliac (s2ai) screws. Spine (Phila Pa 1976) 43(21):E1297-e1304. https://doi.org/10.1097/brs.0000000000002694

    Article  PubMed  Google Scholar 

  51. Makhni MC, Zhang Y, Park PJ, Cerpa M, Yang M, Pham MH, Sielatycki JA, Beauchamp EC, Lenke LG (2019) The “kickstand rod” technique for correction of coronal imbalance in patients with adult spinal deformity: initial case series. J Neurosurg Spine: https://doi.org/10.3171/2019.9.Spine19389

    Article  Google Scholar 

  52. Redaelli A, Langella F, Dziubak M, Cecchinato R, Damilano M, Peretti G, Berjano P, Lamartina C (2020) Useful and innovative methods for the treatment of postoperative coronal malalignment in adult scoliosis: the “kickstand rod” and “tie rod” procedures. Eur Spine J 29(4):849–859. https://doi.org/10.1007/s00586-019-06285-7

    Article  PubMed  Google Scholar 

  53. Buell TJ, Christiansen PA, Nguyen JH, Chen CJ, Yen CP, Shaffrey CI, Smith JS (2020) Coronal correction using kickstand rods for adult thoracolumbar/lumbar scoliosis: case series with analysis of early outcomes and complications. Oper Neurosurg (Hagerstown) 19(4):403–413. https://doi.org/10.1093/ons/opaa073

    Article  Google Scholar 

Download references

Funding

This study was supported by The National Key Research and Development Program of China (2019YFC0120600, 2019YFC110005), The National Natural Science Foundation of China (81871782, 31670983) and The Tianjin Science Fund for Distinguished Young Scholars(18JCJQJC47900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Wang or Qiang Yang.

Ethics declarations

Conflicts of interest

None of the authors had any potential conflicts of interest to declare.

Ethics approval

Our study was approved by the institutional ethics committee of the Tianjin Hospital.

Consent to participate

Written informed consent was obtained from all participants included in this study.

Consent for publication

All the authors consented to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Sun, X., Chen, C. et al. Comparative radiological outcomes and complications of sacral-2-alar iliac screw versus iliac screw for sacropelvic fixation. Eur Spine J 30, 2257–2270 (2021). https://doi.org/10.1007/s00586-021-06864-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06864-7

Keywords

Navigation