Skip to main content

Advertisement

Log in

Properties of open-cell porous metals and alloys for orthopaedic applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

One shortcoming of metals and alloys used to fabricate various components of orthopaedic systems, such as the femoral stem of a total hip joint replacement and the tibial plate of a total knee joint replacement, is well-recognized. This is that the material modulus of elasticity (E′) is substantially larger than that of the contiguous cancellous bone, a consequence of which is stress shielding which, in turn, has been postulated to be implicated in a cascade of events that culminates in the principal life-limiting phenomenon of these systems, namely, aseptic loosening. Thus, over the years, a host of research programs have focused on the synthesis of metallic biomaterials whose E′ can be tailored to match that of cancellous bone. The present work is a review of the extant large volume of literature on these materials, which are called open-cell porous metals/alloys (or, sometimes, metal foams or cellular materials). As such, its range is wide, covering myriad aspects such as production methods, characterization studies, in vitro evaluations, and in vivo performance. The review also includes discussion of seven areas for future research, such as parametric studies of the influence of an assortment of process variables (such as the space holder material and the laser power in the space holder method and the laser-engineered net-shaping process, respectively) on various properties (notably, permeability, fatigue strength, and corrosion resistance) of a given porous metal/alloy, innovative methods of determining fatigue strength, and modeling of corrosion behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  2. Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;. doi:10.1016/j.actbio.2012.06.037.

    Google Scholar 

  3. Elmay W, Prima F, Gloriant T, Bolle B, Zhong Y, Patoor E, Laheurte P. Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy. J Mech Behav Biomed Mater. 2012;. doi:10.1016/j.jmbbm.2012.10.018.

    Google Scholar 

  4. Wen CE, Yamada Y, Hodgson PD. Fabrication of novel metal alloy foams for biomedical applications. Mater Forum. 2005;29:274–7.

    CAS  Google Scholar 

  5. Parthasarathy J, Starly B, Raman S. A design for additive manufacture of functionality graded porous structures with tailored mechanical properties for biomedical applications. J Manuf Process. 2011;13:160–70.

    Article  Google Scholar 

  6. Kopperdahl DL, Morgan EF, Keavney TM. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthop Res. 2002;20:801–5.

    Article  Google Scholar 

  7. Levine B. A new era in porous metals: applications in orthopaedics. Adv Eng Mater. 2008;10:788–92.

    Article  CAS  Google Scholar 

  8. Li P, Zhang K, Colwell CW Jr. Solution deposition of hydroxyapatite on a highly porous titanium surface enhances osseointegration. Key Eng Mat. 2005;284–286:215–8.

    Google Scholar 

  9. Cohen R. A porous tantalum trabecular metal: basic science. Am J Orthop. 2002;31:216–7.

    Google Scholar 

  10. Christie MJ. Clinical applications of Trabecular Metal. Am J Orthop. 2002;31:219–20.

    Article  Google Scholar 

  11. Stiehl JB. Trabecular metal in hip reconstructive surgery. Orthopaedics. 2005;28:662–70.

    Google Scholar 

  12. Levine B, Della Valle CJ, Jacobs JJ. Applications of porous tantalum in total hip arthroplasty. J Am Acad Orthop Surg. 2006;14:646–55.

    Google Scholar 

  13. Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651–70.

    Article  CAS  Google Scholar 

  14. Klika AK, Murray TG, Darwiche H, Barsourn WK. Options for acetabular fixation surfaces. J Long Term Eff Med Implants. 2007;17:187–92.

    Article  Google Scholar 

  15. Levine B, Sporer S, Delal Valle CJ, Jacobs JJ, Paprosky W. Porous tantalum in reconstructive surgery of the knee: a review. J Knee Surg. 2007;20:185–94.

    Google Scholar 

  16. Bansiddhi A, Sargeant TD, Stupp SI, Dunand DC. Porous NiTi for bone: a review. Acta Biomater. 2008;4:773–82.

    Article  CAS  Google Scholar 

  17. Patil N, Lee K, Goodman SB. Porous tantalum in hip and knee reconstructive surgery. J Biomed Mater Res Part B. 2009;89:242–51.

    Google Scholar 

  18. Murr LE, Quinones SA, Gayton SM, Lopez MI, Rodela A, Martinez EY, Hernandez DH, Martinez E, Medina F, Wicker RB. Microstructure and mechanical behavior of Ti–6Al–4V alloy produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2:20–32.

    Article  CAS  Google Scholar 

  19. Singh R, Lee PD, Dashwood RJ, Lindley TC. Titanium foams for medical applications: a review. Mater Technol. 2010;25:127–36.

    CAS  Google Scholar 

  20. Mour M, Das D, Winkler T, Hoenig E, Mielke G, Morlock MM, Schilling AF. Advances in porous biomaterials for dental and orthopaedic applications. Materials. 2011;3:2947–74.

    Article  CAS  Google Scholar 

  21. Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res (Appl Biomater). 2001;58:180–7.

    Article  CAS  Google Scholar 

  22. Mullen L, Stamp RC, Fox P, Jones E, Ngo C, Sutcliffe CJ. Selective laser melting: a unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures. J Biomed Mater Res Part B. 2010;92B:178–88.

    Article  CAS  Google Scholar 

  23. Brailovski V, Prokoshkin S, Gauthier M, Inaekyan K, Dubinskiy S, Petrzhik M, Filonov M. Bulk and porous metastable beta Ti–Nb–Zr(Ta) alloys for biomedical applications. Mater Sci Eng C. 2011;31:643–57.

    Article  CAS  Google Scholar 

  24. Covaciu M, Walczak M, Ramos-Grez J. A method for manufacturing cellular metals with open- and close-type porosities. Mater Lett. 2011;65:2947–50.

    Article  CAS  Google Scholar 

  25. Basalah A, Shanjani Y, Esmaeili S, Toyserkani E. Characterizations of additive manufactured porous titanium implants. J Biomater Res Part B. 2012;100B:1970–9.

    Article  CAS  Google Scholar 

  26. Yook S-W, Jung H-D, Park C-H, Shin K-H, Koh Y-H, Estrin Y, Lim H-E. Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta Biomater. 2012;8:2401–10.

    Article  CAS  Google Scholar 

  27. Jung H-D, Yook S-W, Jang T-S, Li Y, Kim H-E, Koh Y-H. Dynamic freeze casting for the production of porous Ti scaffold. Mater Sci Eng C. 2013;33:59–63.

    Article  CAS  Google Scholar 

  28. Li JC, Dunand DC. Mechanical properties of directionally freeze-cast titanium foams. Acta Biomater. 2011;59:146–58.

    CAS  Google Scholar 

  29. Esen Z, Bor S. Characterization of Ti–6Al–4V alloy foams synthesized by space holder technique. Mater Sci Eng A. 2011;528:3200–9.

    Article  CAS  Google Scholar 

  30. Hrabe NW, Heini P, Flinn B, Korner C, Bordia RK. Compression-compression fatigue of selective electron beam melted cellular titanium (Ti–6Al–4V). J Biomed Mater Res Part B. 2011;99B:313–20.

    Article  CAS  Google Scholar 

  31. Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. Processing of biocompatible porous Ti and Mg. Scrip Mater. 2001;45:1147–53.

    Article  CAS  Google Scholar 

  32. Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. Processing and mechanical properties of autogenous titanium implant materials. J Mater Sci Mater Med. 2001;13:397–401.

    Article  Google Scholar 

  33. Singh R, Lee RD, Lindley TC, Dashwood RJ, Ferrie E, Imwinkelried T. Characterization of the structure and permeability of titanium foams for spinal fusion devices. Acta Biomater. 2009;5:477–87.

    Article  CAS  Google Scholar 

  34. Lin J-G, Zhang Y-F, Mo M. Preparation of porous Ti35Nb alloy and its mechanical properties under monotonic and cyclic loading. Trans Nonferrous Met Soc China. 2010;20:390–4.

    Article  CAS  Google Scholar 

  35. Singh R, Lee PD, Lindley TC, Kohlhauser C, Hellmich C, Bram M, Imwinkelried T, Dashwood RJ. Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling. Acta Biomater. 2010;6:2342–51.

    Article  CAS  Google Scholar 

  36. Singh R, Lee PD, Jones JR, Poolagasundarapillai G, Post T, Lindley TC, Dashwood RJ. Hierarchically structured titanium foams for tissue scaffold applications. Acta Biomater. 2010;6:4596–604.

    Article  CAS  Google Scholar 

  37. Aly MS. Effect of pore size on the tensile behavior of open-cell Ti foams: experimental results. Mater Lett. 2010;64:935–7.

    Article  CAS  Google Scholar 

  38. Ye B, Dunand DC. Titanium foams produced by solid-state replication of NaCl powders. Mater Sci Eng A. 2012;528:691–7.

    Google Scholar 

  39. Traini T, Mangano C, Sammons RL, Mangano F, Maachi A, Piattelli A. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater. 2008;24:1525–33.

    Article  CAS  Google Scholar 

  40. Heinl P, Muller L, Korner C, Singer RF, Muller FA. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4:1536–44.

    Article  CAS  Google Scholar 

  41. Yang D, Shao H, Guo Z, Lin T, Fan L. Preparation and properties of biomedical porous titanium alloys by gelcasting. Biomed Mater. 2011;6:045010.

    Article  CAS  Google Scholar 

  42. Yang D, Guo Z, Shao H, Liu X, Ji Y. Mechanical properties of porous Ti–Mo and Ti–Nb alloys for biomedical application by gelcasting. Procedia Eng. 2010;36:160–7.

    Article  CAS  Google Scholar 

  43. Li Y-H, Chen R-B, Qi G-X, Wang Z-T, Deng Z-Y. Powder sintering of porous Ti–15Mo alloy from TiH2 and Mo powders. J Alloy Compd. 2009;485:215–8.

    Article  CAS  Google Scholar 

  44. Nakas GI, Dericioglu AF, Bor S. Fatigue behavior of TiNi foams processed by the magnesium space holder technique. J Mech Behav Biomed Mater. 2011;4:2017–23.

    Article  CAS  Google Scholar 

  45. Arciniegas M, Aparicio C, Manero JM, Gil FJ. Low elastic modulus metals for joint prosthesis: tantalum and nickel–titanium foams. J Eur Ceram Soc. 2007;27:3391–8.

    Article  CAS  Google Scholar 

  46. Xie F, He X, Cao S, Qu X. Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering. J Mater Process Technol. 2013;213:838–43.

    Article  CAS  Google Scholar 

  47. Zhao C, Zhu X, Liang K, Ding J, Xiang Z, Fan H, Zhang X. Osteoinduction of porous titanium: a comparative study between acid-alkali and chemical-thermal treatments. J Biomed Mater Res Part B. 2010;95B:387–96.

    Article  CAS  Google Scholar 

  48. Brailovski V, Prokoshkin S, Gauthier M, Inaekyan K, Dubinsky S. Mechanical properties of porous metastable beta Ti–Nb–Zr alloys for biomedical applications. J Alloy Compd. 2012;. doi:10.1016/jallcom.2011.12.157.

    Google Scholar 

  49. Jurczyk K, Jurczk MU, Niespodziana J, Jurczyk M. Titanium-10 wt% 45S5 bioglass nanocomposite for biomedical applications. Mater Chem Phys. 2011;131:540–6.

    Article  CAS  Google Scholar 

  50. Aguilar Maya AE, Grana DR, Hazarabedian A, Kokubu GA, Luppo MI, Vigna G. Zr–Ti–Nb porous alloys for biomedical application. Mater Sci Eng C 2010;32:321–9.

    Google Scholar 

  51. Gao Z, Li Q, He F, Huang Y, Wan Y. Mechanical modulation and bioactive surface modification of porous Ti–10Mo alloy for bone implants. Mater Des. 2012;42:13–20.

    Article  CAS  Google Scholar 

  52. Murr LE, Amato KN, Li SJ, Tian YX, Cheng XY, Gaytan SM, Martinez E, Shindo PW, Medina F, Wicker RB. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater. 2011;4:1396–411.

    Article  CAS  Google Scholar 

  53. Bertheville B, Bidaux JE. Enhanced powder sintering of near-equiatomic NiTi shape-memory alloys using Ca reductant vapor. J Alloy Compd. 2005;387:211–6.

    Article  CAS  Google Scholar 

  54. Bertheville B. Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute. Biomaterials. 2006;27:1246–50.

    Article  CAS  Google Scholar 

  55. Chu CL, Chung CY, Lin PH, Wang SD. Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis. Mater Sci Eng. 2004;A366:114–9.

    CAS  Google Scholar 

  56. Bernard S, Balla VK, Bose S, Bandyopadhyay A. Compression fatigue behavior of laser processed porous NiTi alloy. J Mech Behav Biomed Mater. 2012;13:62–8.

    Article  CAS  Google Scholar 

  57. Shishkovsky IV, Volova LT, Kuznetsov MV, Morozoz YG, Parkin IP. Porous biocompatible implants and tissue scaffolds synthesized by selective laser sintering from Ti and NiTi. J Mater Chem. 2008;18:1309–17.

    Article  CAS  Google Scholar 

  58. Imwinkelried T. Mechanical properties of open-pore titanium foam. J Biomed Mater Res. 2007;81A:964–70.

    Article  CAS  Google Scholar 

  59. Prymark O, Bogdanski D, Koller M, Esenwein SA, Muhr G, Beckmann F, Donath T, Assad M, Epple M. Morphological characterization and in vitro biocompatibility of a porous nickel–titanium alloy. Biomaterials. 2005;26:5801–7.

    Article  CAS  Google Scholar 

  60. Torres Y, Pavon JJ, Rodriguez JA. Processing and characterization of porous titanium for implants by using NaCl as space holder. J Mater Process Technol. 2012;212:1061–9.

    Article  CAS  Google Scholar 

  61. Krishna BV, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomater. 2007;3:997–1006.

    Article  CAS  Google Scholar 

  62. Bandyopadhyay A, Espana F, Balla VK, Bose S, Ohgami Y, Davies NM. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 2010;6:1640–8.

    Article  CAS  Google Scholar 

  63. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scrip Mater. 2011;65:21–4.

    Article  CAS  Google Scholar 

  64. Nouri A, Hodgson PD, Wen CE. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomater. 2010;6:1630–9.

    Article  CAS  Google Scholar 

  65. Tuncer N, Arslan G, Maire E, Salvo L. Influence of cell aspect ratio on architecture and compressive strength of titanium foams. Mater Sci Eng A. 2011;528:7368–74.

    Article  CAS  Google Scholar 

  66. Bernard S, Balla VK, Bose S, Bandyopadhyay A. Rotating bending fatigue response of laser processed porous NiTi alloy. Mater Sci Eng C. 2011;31:815–20.

    Article  CAS  Google Scholar 

  67. Van Bael S, Kerckhofs G, Moesen M, Pyka G, Schrooten J, Kruth JP. Micro-CT based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A. 2011;528:7423–31.

    Article  CAS  Google Scholar 

  68. Sevilla P, Aparicio C, Planell JA, Gil FJ. Comparison of the mechanical properties between tantalum and nickel–titanium foam implant materials for bone ingrowth applications. J Alloys Compd. 2007;439:67–73.

    Article  CAS  Google Scholar 

  69. de Vasconcellos LMR, Oliveira FN, de Oliveira Leite D, de Vasconcellos LGO, do Prado RF, Ramos CJ, de Alencastro Graca ML, Cairo CAA, Carvalho YR. Novel production method of porous surface Ti samples for biomedical application. J Mater Sci: Mater Med 2012;23:357–64.

    Google Scholar 

  70. Niu W, Gill S, Dong H, Bai C. A new two-scale model for predicting elastic properties of porous titanium formed with space-holders. Comput Mater Sci. 2010;50:172–8.

    Article  CAS  Google Scholar 

  71. Barbas A, Bonnet AS, Lipinski P, Pesci R, Dubois G. Development and mechanical characterization of porous titanium bone substitutes. J Mech Behav Biomed Mater. 2012;9:34–44.

    Article  CAS  Google Scholar 

  72. Marin E, Fusi S, Pressacco M, Paussa L, Fedrizzi L. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: trabecular titanium. J Mech Behav Biomed Mater. 2010;3:373–81.

    Article  CAS  Google Scholar 

  73. Teoh SH, Thampuran R, Seah WKH, Goh JCH. Effect of pore sizes and cholesterol-lipid solution on the fracture toughness of pure titanium sintered compacts. Biomaterials. 1993;14:407–41.

    Article  CAS  Google Scholar 

  74. Niihara K, Morena R, Hasselman DPH. Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett. 1982;1:13–6.

    Article  CAS  Google Scholar 

  75. Ponton CB, Rawlings RD. Vickers indentation fracture toughness test. Part 1: review of literature and formulation of standardised indentation toughness equations. Mater Sci Eng. 1989;5:866–72.

    Google Scholar 

  76. Ponton CB, Rawlings RD. Vickers indentation fracture toughness test. Part 2: application and critical evaluation of standardised indentation toughness equations. Mater Sci Eng. 1989;5:961–75.

    CAS  Google Scholar 

  77. Quinn GD, Bradt RC. On the Vickers indentation fracture toughness test. J Am Ceram Soc. 2007;90:673–80.

    Article  CAS  Google Scholar 

  78. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  79. Kienapfel H, Sprey C, Wilke A, Griss P. Implant fixation by bone ingrowth. J Arthroplasty. 1999;14:355–68.

    Article  CAS  Google Scholar 

  80. Kohler SS, Roberts J, Upton ML, Wilson CG, Bonassar LJ, Schlichting AL. Direct perfusion measurements of cancellous bone anisotropic permeability. J Biomech. 2001;34:1197–202.

    Article  Google Scholar 

  81. Gibson L, Ashby M. Cellular solids: structure and properties. Cambridge: Cambridge University Press; 1999.

    Google Scholar 

  82. German RM. Manipulation of strength during sintering as a basis for obtaining rapid densification without distortion. Mater Trans. 2001;42:1400–10.

    Article  CAS  Google Scholar 

  83. Xu X, Lu P, German RM. Densification and strength evolution in solid-state sintering. Part II. Strength model. J Mater Sci. 2002;37:117–26.

    Article  CAS  Google Scholar 

  84. Nielsen LF. Elasticity and damping of porous materials and impregnated materials. J Am Ceram Soc. 1984;67:93–8.

    Article  CAS  Google Scholar 

  85. Camploi G, Borleffs MS, Amin Yavari S, Wauthle R, Weinans H, Zadpoor AA. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des. 2013;. doi:10.1016/j.matdes.2013.01.071.

    Google Scholar 

  86. Parthasarathy J, Starly B, Raman S, Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010;3:249–59.

    Article  Google Scholar 

  87. Heinl P, Korner C, Singer RF. Selective electron beam melting of cellular titanium: mechanical properties. Adv Eng Mater. 2008;10:882–8.

    Article  CAS  Google Scholar 

  88. Gent A, Thomas A. Mechanics of foamed elastic materials. Rubber Chem Technol. 1963;36:597–601.

    Article  CAS  Google Scholar 

  89. Roberts AP, Garboczi EJ. Elastic properties of model random three-dimensional open-cell solids. J Mech Phys Solids. 2002;50:33–5.

    Article  Google Scholar 

  90. Babaee S, Jahromi BH, Adjari A, Nayeb-Hashemi H, Vaziri A. Mechanical properties of open-cell rhombic dodecahedron cellular structures. Acta Mater. 2012;60:2873–85.

    Article  CAS  Google Scholar 

  91. Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21:571–4.

    Article  Google Scholar 

  92. Thelen S, Barthelat F, Brinson LC. Mechanics considerations for microporous titanium as an orthopedic implant material. J Biomed Mater Res. 2004;69A:601–10.

    Article  CAS  Google Scholar 

  93. Muller U, Imwinklelried T, Horst M, Sievers M, Graf-Hauser U. Do human osteoblasts grow into open-porous titanium? Eur Cells Mater. 2006;11:8–15.

    CAS  Google Scholar 

  94. Xue W, Krishna BV, Bandyopadhyay A, Bose S. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 2007;7:1007–18.

    Article  CAS  Google Scholar 

  95. Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, Sasaki K, Nishida N, Nakamura T, Kokubo T. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater. 2011;7:1398–406.

    Article  CAS  Google Scholar 

  96. Assad M, Chernyshov A, Leroux MA, Rivard C-H. A new porous titanium–nickel alloy: part 1. Cytotoxicity and genotoxicity evaluation. Biomed Mater Eng. 2002;12:225–37.

    CAS  Google Scholar 

  97. Gu YW, Li H, Tay BY, Lim CS, Yong MS, Khor KA. In vitro bioactivity and osteoblast response of porous NiTi synthesized by SHS using nanocrystalline Ni–Ti reaction agent. J Biomed Mater Res. 2006;78A:316–23.

    Article  CAS  Google Scholar 

  98. Wu S, Liu X, Chan YL, Ho JPY, Chung CY, Chu PK, Chu CL, Yeung KWK, Lu WW, Cheung KMC, Luk KDK. Nickel release behavior, cytocompatibility, and superelasticity of oxidized porous single-phase NiTi. J Biomed Mater Res. 2007;81A:948–55.

    Article  CAS  Google Scholar 

  99. Habijan T, Haberland C, Meier H, Frenzel J, Wittsiepe J, Wuwer C, Greulich C, Schildhauer TA, Koller M. The biocompatibility of dense and porous nickel–titanium produced by selective laser melting. Mater Sci Eng C. 2013;33:419–26.

    Article  CAS  Google Scholar 

  100. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 1997. Appendix 3B. Available from http://www.scribd.com/doc/6909835/trypan-Blue-Exclusion-Test-of-Cell-Viability Accessed July 2007.

  101. Parry JM. A proposal for a new OECD guideline for the in vitro micronucleus test. 1998. Available from http://www.swan.ac.uk/cget/ejgt/articleMNUKEMS Protocol.htm. Accessed July 2007.

  102. Manukyan K, Amirkhanyan N, Aydinyan S, Danghyan V, Grigoryan R, Sarkisyan N, Gasparyan G, Aroutiounian R, Kharatyan S. Novel NiZr-based porous biomaterials: synthesis and in vitro testing. Chem Eng J. 2010;162:406–14.

    Article  CAS  Google Scholar 

  103. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg. 1999;81B:907–14.

    Article  Google Scholar 

  104. Hacking SA, Bobyn JD, Toh K-K, Tanzer M, Krygier JJ. Fibrous tissue ingrowth and attachment to porous tantalum. J Biomed Mater Res. 2000;52:631–8.

    Article  CAS  Google Scholar 

  105. Zou X, Li H, Bunder M, Egund N, Lind M, Bunger C. Bone ingrowth characteristics of porous tantalum and carbon fiber interbody devices: an experimental study in pigs. Spine J. 2004;4:99–105.

    Article  Google Scholar 

  106. Zou X, Li H, Teng Z, Xue Q, Egund N, Lind M, Bunger C. Pedicle screw fixation enhances anterior lumbar interbody fusion with porous tantalum cages: an experimental study in pigs. Spine. 2005;30:E392–9.

    Article  Google Scholar 

  107. Adams JE, Zobitz ME, Reach JS Jr, Lewallen DG, Steinmann SP. Canine carpal joint fusion: a model for four-corner arthrodesis using a porous tantalum implant. J Hand Surg Am. 2005;30:1128–35.

    Article  Google Scholar 

  108. Itala A, Heijink A, Leerapun T, Reach JS, An KN, Lewallen DG. Successful canine patellar tendon reattachment to porous tantalum. Clin Orthop Relat Res. 2007;463:202–7.

    Google Scholar 

  109. Levi AD, Choi WG, Keller PJ, Heiserman JE, Sonntag VK, Dickman CA. The radiographic and imaging characteristics of porous tantalum implants within the human cervical spine. Spine. 1998;23:1245–50.

    Article  CAS  Google Scholar 

  110. Assad M, Chernyshov A, Leroux MA, Rivard C-H. A new porous titanium–nickel alloy: part 2. Sensitization, irritation and systemic toxicity evaluation. Biomed Mater Eng. 2002;12:339–46.

    CAS  Google Scholar 

  111. Kim JS, Kang JH, Kang SB, Yoon KS, Kwon YS. Porous NiTi biomaterial by self-propagating high-temperature synthesis. Adv Eng Mater. 2004;6:403–6.

    Article  CAS  Google Scholar 

  112. Wigfield C, Robertson J, Gill S, Nelson R. Clinical experience with porous tantalum interbody implants in a prospective randomized controlled trail. Br J Neurosurg. 2003;17:418–25.

    Article  CAS  Google Scholar 

  113. Moen TC, Ghate R, Salaz N, Ghodasra J, Stulberg SD. A monoblock porous tantalum acetabular cup has no osteolysis on CT at 10 years. Clin Orthop Relat Res. 2011;469:382–6.

    Article  Google Scholar 

  114. Meneghini RM, Ford KS, McCollough CH, Hanssen AD, Lewallen DG. Bone remodeling around porous metal cementless acetabular components. J Arthroplasty. 2009;25:741–7.

    Article  Google Scholar 

  115. Kitamura N, Leung SB, Engh CA Sr. Characteristics of pelvic osteolysis on computed tomography after total hip arthroplasty. Clin Orthop Relat Res. 2005;441:291–7.

    Article  Google Scholar 

  116. Tsao AK, Roberson JR, Christie MJ, Dore DD, Heck AD, Robertson DD, Poggie RA. Biomechanical and clinical evaluations of a porous tantalum implant for the treatment of early-stage osteonecrosis. J Bone Joint Surg. 2005;87(Suppl 2):22–7.

    Article  Google Scholar 

  117. Shuler MS, Rooks MD, Roberson JR, Christie MJ. Porous tantalum implant in early osteonecrosis of the hip: preliminary report on operative, survival, and outcomes results. J Arthroplasty. 2007;22:26–31.

    Article  Google Scholar 

  118. Sporer SM, Paprosky WG. Acetabular revision using a trabecular metal acetabular component for severe acetabular bone loss associated with a pelvic discontinuity. J Arthroplasty. 2006;21(Suppl):87–90.

    Article  Google Scholar 

  119. Bal BS, Greenberg DD, Lowe J, Aleto TJ. Primary total knee arthroplasty performed with minimally invasive surgery subvastus approach. Tech Knee Surg. 2007;6:60–7.

    Article  Google Scholar 

  120. Weeden SH, Schmidt RH. The use of tantalum porous metal implants for Paprosky 3A and 3B defects. J Arthroplasty. 2007;22(Suppl 2):151–5.

    Article  Google Scholar 

  121. Meneghini RM, Lewallen DG, Hanssen AD. Use of porous tantalum metaphyseal cones for severe tibial loss during revision total knee replacement. J Bone Joint Surg. 2008;90:78–84.

    Article  Google Scholar 

  122. Fernandez-Fairen M, Sala P, Dufoo M Jr, Ballester J, Murica A, Merzthal L. Anterior cervical fusion with tantalum implant: a prospective randomized controlled study. Spine. 2008;33:465–72.

    Article  Google Scholar 

  123. Macheras G, Kateros K, Kostakos A, Koutsostathis S, Denomaras D, Papagelopoulos PJ. Eight- to ten-year clinical and radiographic outcome of a porous tantalum monoblock acetabular component. J Arthroplasty. 2009;24:705–9.

    Article  Google Scholar 

  124. Xenakis TA, Macheras GA, Stafilas KS, Kostakos AT, Bargiotas K, Malizos KN. Multicenter use of a porous tantalum monoblock acetabular component. Int Orthop. 2009;33:911–6.

    Article  Google Scholar 

  125. Dunbar MJ, Wilson DAJ, Hennigar AW, Amirault JD, Gross M, Reardon GP. Fixation of a trabecular metal knee arthroplasty component: a prospective randomized study. J Bone Joint Surg. 2009;91:1578–86.

    Article  CAS  Google Scholar 

  126. Frigg A, Dougali H, Boyd S, Nigg B. Can porous tantalum be used to achieve ankle and subtalar arthrodesis? A pilot study. Clin Orthop Relat Res. 2010;468:209–16.

    Article  Google Scholar 

  127. Lofgren H, Engquist M, Hoffmann P, Sigstedt B, Vavruch L. Clinical and radiological evaluation of Trabecular Metal and Smith–Robinson technique in anterior cervical fusion for degenerative disease: a prospective, randomized, controlled study with 2-year follow-up. Eur Spine J. 2010;19:464–74.

    Article  Google Scholar 

  128. Baad-Hansen T, Kold S, Nielsen PT, Laursen MB, Christensen PH, Soballe K. Comparison of trabecular metal cups and titanium fiber-mesh cups in primary hip arthroplasty: a randomized RSA and bone mineral densitometry study of 50 hips. Acta Orthop. 2011;82:155–60.

    Article  Google Scholar 

  129. Unger AS, Duggan JP. Midterm results of a porous tantalum monoblock tibia component: clinical and radiographic results of 109 knees. J Arthroplasty. 2011;26:855–60.

    Article  Google Scholar 

  130. Jafari SM, Bender B, Covie C, Parvizi J, Sharkey PF, Hozack WJ. Do tantalum and titanium cups show similar results in revision hip arthroplasty? Clin Orthop Relat Res. 2010;468:459–65.

    Article  Google Scholar 

  131. Tucker DJ. Lateral column lengthening in adult flatfoot surgery using a titanium metal foam wedge implant. Tech Foot Ankle Surg. 2010;9:205–10.

    Article  Google Scholar 

  132. Qi G, Fan M, Lewis G, Wayne SF. An innovative multi-component variable that reveals hierarchy and evolution of structural damage in a solid: application to acrylic bone cement. J Mater Sci: Mater Med. 2012;23:217–28.

    Article  CAS  Google Scholar 

  133. Garcia-Moreno F, Mukherjee M, Jimenez C, Rack A, Banhart J. Metal foaming investigated by X-ray radioscopy. Metals. 2012;2:10–21.

    Article  CAS  Google Scholar 

  134. Keavney TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Ann Rev Biomed Eng. 2001;3:307–33.

    Article  Google Scholar 

  135. Orazem ME, Tribollet B. Electrochemical impedance spectroscopy. Hoboken: Wiley; 2008.

    Book  Google Scholar 

  136. Scheideler L, Füger C, Schille C, Rupp F, Wendel H-P, Hort N, Reichel HP, Geis-Gerstorfer J. Comparison of different in vitro tests for biocompatibility screening of Mg alloys. Acta Biomater. 2013. doi:10.1016/jactbio.2013.02.020.

    Google Scholar 

  137. Zhang X, Zhou B, Zeng Y, Gu P. Model layout optimization for solid ground curing rapid prototyping processes. Robotics Comput Integr Manuf. 2002;18:41–51.

    Article  CAS  Google Scholar 

  138. Lu ZL, Shi YS, Liu JH, Chen Y, Huang SH. Manufacturing AISI304 metal parts by indirect selective laser sintering combined with isostatic pressing. Int J Adv Manuf Technol. 2008;39:1157–63.

    Article  Google Scholar 

  139. Bertol LS, Junior WK, da Silva FP, Aumund-Kopp C. Medical design: direct metal laser sintering of Ti–6Al–4V. Mater Des. 2010;31:3982–8.

    Article  CAS  Google Scholar 

  140. Nugroho AW, Leadbeater G, Davies IJ. Processing of a porous titanium alloy from elemental powders using solid state isothermal foaming technique. J Mater Sci Mater Med. 2010;21:3103–7.

    Article  CAS  Google Scholar 

  141. Kashef S, Asgari A, Hilditch TB, Yan W, Goel VK, Hodgson PD. Fracture toughness of titanium foams for medical applications. Mater Sci Eng A. 2010;527:7689–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Biomet (Warsaw, IN, USA), Wright Medical Technology (Arlington, TN, USA), and Zimmer (Warsaw, IN, USA), for permission to use the images presented in Fig. 1; Mr. Ming Fan, Department of Mechanical Engineering, The University of Memphis, for the results presented in Fig. 2; and Dr. Jon Moseley, Director, Implant Technology, Wright Medical Technology, for help in sourcing property data for BIOFOAM™.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladius Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, G. Properties of open-cell porous metals and alloys for orthopaedic applications. J Mater Sci: Mater Med 24, 2293–2325 (2013). https://doi.org/10.1007/s10856-013-4998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4998-y

Keywords

Navigation