Hydroxyapatite Use in Spine Surgery—Molecular and Clinical Aspect
Abstract
:1. Introduction
2. Immunologic Reaction to Hydroxyapatite
2.1. Mast Cells, Cytokines, and Chemokines
2.2. Macrophage Recruitment
2.3. Adhesive Cells Recruitment, Integrins, and Remodelling of the Cytoskeleton
2.4. Osteogenesis
3. Use of Hydroxyapatite in Spine Surgery
3.1. Anterior Cervical Discectomy and Fusion (ACDF)
3.1.1. Types of grafts for ACDF
3.1.2. Hydroxyapatite Properties in ACDF
3.1.3. Nanohydroxyapatite Cages
3.1.4. Nanohydroxyapatite/Polyamide 66 Cages
3.1.5. Hydroxyapatite/PEEK Cages
3.2. Lumbar Spinal Fusion
3.2.1. Hydroxyapatite with Beta-Tricalcium
3.2.2. Nanocrystalline Hydroxyapatite
3.3. Pedicle Screw Fixation
3.3.1. HAp Screw Coating
3.3.2. HAp Sticks
3.3.3. HAp Granules
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorozhkin, S.V. Calcium Orthophosphate Bioceramics. Ceram. Int. 2015, 41, 13913–13966. [Google Scholar] [CrossRef]
- Balhuc, S.; Campian, R.; Labunet, A.; Negucioiu, M.; Buduru, S.; Kui, A. Dental Applications of Systems Based on Hydroxyapatite Nanoparticles—An Evidence-Based Update. Crystals 2021, 11, 674. [Google Scholar] [CrossRef]
- Fiume, E.; Magnaterra, G.; Rahdar, A.; Verné, E.; Baino, F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021, 4, 542–563. [Google Scholar] [CrossRef]
- Spiller, K.L.; Koh, T.J. Macrophage-Based Therapeutic Strategies in Regenerative Medicine. Adv. Drug Deliv. Rev. 2017, 122, 74. [Google Scholar] [CrossRef]
- Werner, S.; Grose, R. Regulation of Wound Healing by Growth Factors and Cytokines. Physiol. Rev. 2003, 83, 835–870. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, C.; Wang, X.; Shi, M.; Zhu, Y.; Jing, L.; Wu, C.; Chang, J. Stimulation of Osteogenesis and Angiogenesis by Micro/Nano Hierarchical Hydroxyapatite via Macrophage Immunomodulation. Nanoscale 2019, 11, 17699–17708. [Google Scholar] [CrossRef]
- Franz, S.; Rammelt, S.; Scharnweber, D.; Simon, J.C. Immune Responses to Implants—A Review of the Implications for the Design of Immunomodulatory Biomaterials. Biomaterials 2011, 32, 6692–6709. [Google Scholar] [CrossRef]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Narducci, P.; Nicolin, V. Differentiation of Activated Monocytes into Osteoclast-like Cells on a Hydroxyapatite Substrate: An in Vitro Study. Ann. Anat. 2009, 191, 349–355. [Google Scholar] [CrossRef]
- Mestres, G.; Espanol, M.; Xia, W.; Persson, C.; Ginebra, M.P.; Ott, M.K. Inflammatory Response to Nano- and Microstructured Hydroxyapatite. PLoS ONE 2015, 10, e0120381. [Google Scholar] [CrossRef] [Green Version]
- Ekström, K.; Omar, O.; Granéli, C.; Wang, X.; Vazirisani, F.; Thomsen, P. Monocyte Exosomes Stimulate the Osteogenic Gene Expression of Mesenchymal Stem Cells. PLoS ONE 2013, 8, e75227. [Google Scholar] [CrossRef] [PubMed]
- Rogina, A.; Antunović, M.; Pribolšan, L.; Caput Mihalić, K.; Vukasović, A.; Ivković, A.; Marijanović, I.; Ferrer, G.G.; Ivanković, M.; Ivanković, H. Human Mesenchymal Stem Cells Differentiation Regulated by Hydroxyapatite Content within Chitosan-Based Scaffolds under Perfusion Conditions. Polymers 2017, 9, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrère, F.; van Blitterswijk, C.A.; de Groot, K. Bone Regeneration: Molecular and Cellular Interactions with Calcium Phosphate Ceramics. Int. J. Nanomed. 2006, 1, 317. [Google Scholar]
- Von Recum, A.F.; Shannon, C.E.; Cannon, C.E.; Long, K.J.; Van Kooten, T.G.; Meyle, J. Surface Roughness, Porosity, and Texture as Modifiers of Cellular Adhesion. Tissue Eng. 1996, 2, 241–253. [Google Scholar] [CrossRef]
- Suárez-González, D.; Barnhart, K.; Saito, E.; Vanderby, R.; Hollister, S.J.; Murphy, W.L. Controlled Nucleation of Hydroxyapatite on Alginate Scaffolds for Stem Cell-Based Bone Tissue Engineering. J. Biomed. Mater. Res. A 2010, 95, 222–234. [Google Scholar] [CrossRef] [Green Version]
- O’Hare, P.; Meenan, B.J.; Burke, G.A.; Byrne, G.; Dowling, D.; Hunt, J.A. Biological Responses to Hydroxyapatite Surfaces Deposited via a Co-Incident Microblasting Technique. Biomaterials 2010, 31, 515–522. [Google Scholar] [CrossRef]
- Huang, H.Y.; Manga, Y.B.; Huang, W.N.; Lin, C.K.; Tseng, C.L.; Huang, H.M.; Wu, C.Y.; Wu, C.C. Effect of Hydroxyapatite Formation on Titanium Surface with Bone Morphogenetic Protein-2 Loading through Electrochemical Deposition on MG-63 Cells. Materials 2018, 11, 1897. [Google Scholar] [CrossRef] [Green Version]
- Mucalo, M.R. Special Issue: Novel Advances and Approaches in Biomedical Materials Based on Calcium Phosphates. Materials 2019, 12, 405. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.T.; Rosenbaum, A.J. Bone Grafts, Bone Substitutes and Orthobiologics: The Bridge between Basic Science and Clinical Advancements in Fracture Healing. Organogenesis 2012, 8, 114. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Ye, F.; Yang, R.; Lu, X.; Shi, Y.; Li, L.; Fan, H.; Bu, H. Osteoinduction of Hydroxyapatite/Beta-Tricalcium Phosphate Bioceramics in Mice with a Fractured Fibula. Acta Biomater. 2010, 6, 1569–1574. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Chen, F.; Wei, Y.; Chen, X.; Zhou, Y.; Yang, X.; Zhu, X.; Tu, C.; Zhang, X. Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway. Int. J. Nanomed. 2019, 14, 7987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripamonti, U. Osteoinduction in Porous Hydroxyapatite Implanted in Heterotopic Sites of Different Animal Models. Biomaterials 1996, 17, 31–35. [Google Scholar] [CrossRef]
- Lamichhane, S.; Anderson, J.A.; Vierhout, T.; Remund, T.; Sun, H.; Kelly, P. Polytetrafluoroethylene Topographies Determine the Adhesion, Activation, and Foreign Body Giant Cell Formation of Macrophages. J. Biomed. Mater. Res. A 2017, 105, 2441–2450. [Google Scholar] [CrossRef] [PubMed]
- Su, N.; Gao, P.L.; Wang, K.; Wang, J.Y.; Zhong, Y.; Luo, Y. Fibrous Scaffolds Potentiate the Paracrine Function of Mesenchymal Stem Cells: A New Dimension in Cell-Material Interaction. Biomaterials 2017, 141, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Miron, R.J.; Zhang, Y.F. Osteoinduction: A Review of Old Concepts with New Standards. J. Dent. Res. 2012, 91, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Infante, A.; Rodríguez, C.I. Osteogenesis and Aging: Lessons from Mesenchymal Stem Cells. Stem Cell Res. Ther. 2018, 9, 244. [Google Scholar] [CrossRef] [Green Version]
- Lytkina, D.; Gutsalova, A.; Fedorishin, D.; Korotchenko, N.; Akhmedzhanov, R.; Kozik, V.; Kurzina, I. Synthesis and Properties of Zinc-Modified Hydroxyapatite. J. Funct. Biomater. 2020, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Bystrova, A.V.; Dekhtyar, Y.D.; Popov, A.I.; Coutinho, J.; Bystrov, V.S. Modified Hydroxyapatite Structure and Properties: Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure. Ferroelectrics 2015, 475, 135–147. [Google Scholar] [CrossRef]
- Hübner, W.; Blume, A.; Pushnjakova, R.; Dekhtyar, Y.; Hein, H.J. The Influence of X-Ray Radiation on the Mineral/Organic Matrix Interaction of Bone Tissue: An FT-IR Microscopic Investigation. Int. J. Artif. Organs 2005, 28, 66–73. [Google Scholar] [CrossRef]
- De Freitas Costa, N.; Melo, B.R.; Brito, R.T.; de Oliveira Fernandes, M.B.; Bernardo, V.G.; Fonseca, E.C.; Conz, M.B.; Soares, G.A.; Granjeiro, J.M. Quality and Intensity of the Tissue Response to Two Synthetic Granular Hydroxyapatite Implanted in Critical Defects of Rat Calvaria. Mater. Res. 2009, 12, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Sadowska, J.M.; Wei, F.; Guo, J.; Guillem-Marti, J.; Ginebra, M.P.; Xiao, Y. Effect of Nano-Structural Properties of Biomimetic Hydroxyapatite on Osteoimmunomodulation. Biomaterials 2018, 181, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Laquerriere, P.; Grandjean-Laquerriere, A.; Jallot, E.; Balossier, G.; Frayssinet, P.; Guenounou, M. Importance of Hydroxyapatite Particles Characteristics on Cytokines Production by Human Monocytes in Vitro. Biomaterials 2003, 24, 2739–2747. [Google Scholar] [CrossRef]
- Lebre, F.; Sridharan, R.; Sawkins, M.J.; Kelly, D.J.; O’Brien, F.J.; Lavelle, E.C. The Shape and Size of Hydroxyapatite Particles Dictate Inflammatory Responses Following Implantation. Sci. Rep. 2017, 7, 2922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktuğ, S.L.; Durdu, S.; Yalçın, E.; Çavuşoğlu, K.; Usta, M. Bioactivity and Biocompatibility of Hydroxyapatite-Based Bioceramic Coatings on Zirconium by Plasma Electrolytic Oxidation. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 1020–1027. [Google Scholar] [CrossRef]
- Gulati, K.; Hamlet, S.M.; Ivanovski, S. Tailoring the Immuno-Responsiveness of Anodized Nano-Engineered Titanium Implants. J. Mater. Chem. B 2018, 6, 2677–2689. [Google Scholar] [CrossRef]
- Venkatesan, J.; Kim, S.K. Nano-Hydroxyapatite Composite Biomaterials for Bone Tissue Engineering—A Review. J. Biomed. Nanotechnol. 2014, 10, 3124–3140. [Google Scholar] [CrossRef]
- Li, X.; Liu, M.; Chen, F.; Wang, Y.; Wang, M.; Chen, X.; Xiao, Y.; Zhang, X. Design of Hydroxyapatite Bioceramics with Micro-/Nano-Topographies to Regulate the Osteogenic Activities of Bone Morphogenetic Protein-2 and Bone Marrow Stromal Cells. Nanoscale 2020, 12, 7284–7300. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, X.; Jiang, D.; Luo, X.; Tang, K.; Zhao, Z.; Zhong, W.; Lei, T.; Quan, Z. Long-Term Results of Anterior Cervical Corpectomy and Fusion with Nano-Hydroxyapatite/Polyamide 66 Strut for Cervical Spondylotic Myelopathy. Sci. Rep. 2016, 6, 26751. [Google Scholar] [CrossRef]
- Bansal, S.; Chauhan, V.; Sharma, S.; Maheshwari, R.; Juyal, A.; Raghuvanshi, S. Evaluation of Hydroxyapatite and Beta-Tricalcium Phosphate Mixed with Bone Marrow Aspirate as a Bone Graft Substitute for Posterolateral Spinal Fusion. Indian J. Orthop. 2009, 43, 234–239. [Google Scholar] [CrossRef]
- Lee, J.H.; Ryu, M.Y.; Baek, H.R.; Lee, K.M.; Seo, J.H.; Lee, H.K. Fabrication and Evaluation of Porous Beta-Tricalcium Phosphate/Hydroxyapatite (60/40) Composite as a Bone Graft Extender Using Rat Calvarial Bone Defect Model. Sci. World J. 2013, 2013, 481789. [Google Scholar] [CrossRef]
- Hu, J.; Ou, Y.; Zhu, Y.; Luo, W.; Zhao, Z.; Du, X.; Li, J. Effectiveness of Nano-Hydroxyapatite/Polyamide-66 Cage in Interbody Fusion for Degenerative Lumbar Scoliosis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2019, 33, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Ohe, M.; Moridaira, H.; Inami, S.; Takeuchi, D.; Nohara, Y.; Taneichi, H. Pedicle Screws with a Thin Hydroxyapatite Coating for Improving Fixation at the Bone-Implant Interface in the Osteoporotic Spine: Experimental Study in a Porcine Model. J. Neurosurg. Spine 2018, 28, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.M.; Kong, N.; Zhang, X.Y.; Bai, H.T.; Yao, Y.; Han, H.Z.; Luo, Y.G. Extracellular Matrix-Coating Pedicle Screws Conduct and Induce Osteogenesis. Eur. J. Orthop. Surg. Traumatol. 2014, 24 (Suppl. S1), 173–182. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Klein, T.; Murray, R.Z.; Crawford, R.; Chang, J.; Wu, C.; Xiao, Y. Osteoimmunomodulation for the Development of Advanced Bone Biomaterials. Mater. Today 2016, 19, 304–321. [Google Scholar] [CrossRef] [Green Version]
- Kzhyshkowska, J.; Gudima, A.; Riabov, V.; Dollinger, C.; Lavalle, P.; Vrana, N.E. Macrophage Responses to Implants: Prospects for Personalized Medicine. J. Leukoc. Biol. 2015, 98, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.H.; Zavgorodniy, A.V.; Loo, C.Y.; Rohanizadeh, R. Synthesis and Characterization of Hydroxyapatite with Different Crystallinity: Effects on Protein Adsorption and Release. J. Biomed. Mater. Res. Part A 2012, 100A, 1539–1549. [Google Scholar] [CrossRef]
- Yin, G.; Liu, Z.; Zhan, J.; Ding, F.; Yuan, N. Impacts of the Surface Charge Property on Protein Adsorption on Hydroxyapatite. Chem. Eng. J. 2002, 87, 181–186. [Google Scholar] [CrossRef]
- Fernández-Montes Moraleda, B.; Román, J.S.; Rodríguez-Lorenzo, L.M. Influence of Surface Features of Hydroxyapatite on the Adsorption of Proteins Relevant to Bone Regeneration. J. Biomed. Mater. Res. Part A 2013, 101A, 2332–2339. [Google Scholar] [CrossRef] [Green Version]
- Broughton, G.; Janis, J.E.; Attinger, C.E. The Basic Science of Wound Healing. Plast. Reconstr. Surg. 2006, 117, 12S–34S. [Google Scholar] [CrossRef]
- Ridiandries, A.; Tan, J.T.M.; Bursill, C.A. The Role of Chemokines in Wound Healing. Int. J. Mol. Sci. 2018, 19, 3217. [Google Scholar] [CrossRef] [Green Version]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, M.L.; Koh, T.J. Macrophage Phenotypes during Tissue Repair. J. Leukoc. Biol. 2013, 93, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, T.; Movila, A.; Kataoka, S.; Wisitrasameewong, W.; Torruella, M.R.; Murakoshi, M.; Murakami, S.; Kawai, T. Proinflammatory M1 Macrophages Inhibit RANKL-Induced Osteoclastogenesis. Infect. Immun. 2016, 84, 2802–2812. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Wang, X.; Zhou, Y.; Xiao, Y. RANKL-Induced M1 Macrophages Are Involved in Bone Formation. Bone Res. 2017, 5, 17019. [Google Scholar] [CrossRef] [PubMed]
- Medhat, D.; Rodríguez, C.I.; Infante, A. Immunomodulatory Effects of MSCs in Bone Healing. Int. J. Mol. Sci. 2019, 20, 5467. [Google Scholar] [CrossRef] [Green Version]
- Sridharan, R.; Cameron, A.R.; Kelly, D.J.; Kearney, C.J.; O’Brien, F.J. Biomaterial Based Modulation of Macrophage Polarization: A Review and Suggested Design Principles. Mater. Today 2015, 18, 313–325. [Google Scholar] [CrossRef]
- Sadowska, J.M.; Wei, F.; Guo, J.; Guillem-Marti, J.; Lin, Z.; Ginebra, M.P.; Xiao, Y. The Effect of Biomimetic Calcium Deficient Hydroxyapatite and Sintered β-Tricalcium Phosphate on Osteoimmune Reaction and Osteogenesis. Acta Biomater. 2019, 96, 605–618. [Google Scholar] [CrossRef]
- Wang, L.X.; Zhang, S.X.; Wu, H.J.; Rong, X.L.; Guo, J. M2b Macrophage Polarization and Its Roles in Diseases. J. Leukoc. Biol. 2019, 106, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Jeong, H.; Lee, H.; Hong, M.; Park, S.Y.; Bae, H. Magnolol Attenuates Cisplatin-Induced Muscle Wasting by M2c Macrophage Activation. Front. Immunol. 2020, 11, 77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ding, Y.; Rao, G.Z.; Miao, D. Effects of IL-10 and Glucose on Expression of OPG and RANKL in Human Periodontal Ligament Fibroblasts. Brazilian J. Med. Biol. Res. 2016, 49, e4324. [Google Scholar] [CrossRef] [Green Version]
- Gulati, K.; Moon, H.J.; Li, T.; Sudheesh Kumar, P.T.; Ivanovski, S. Titania Nanopores with Dual Micro-/Nano-Topography for Selective Cellular Bioactivity. Mater. Sci. Eng. C 2018, 91, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Rostam, H.M.; Fisher, L.E.; Hook, A.L.; Burroughs, L.; Luckett, J.C.; Figueredo, G.P.; Mbadugha, C.; Teo, A.C.K.; Latif, A.; Kämmerling, L.; et al. Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo. Matter 2020, 2, 1564–1581. [Google Scholar] [CrossRef]
- Pan, L.; Zhao, Y.; Yuan, Z.; Qin, G. Research Advances on Structure and Biological Functions of Integrins. Springerplus 2016, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Dong, X.; Zhao, B.; Li, J.; Lu, C.; Springer, T.A. Atypical Interactions of Integrin Avβ8 with Pro-TGF-Β1. Proc. Natl. Acad. Sci. USA 2017, 114, E4168–E4174. [Google Scholar] [CrossRef]
- Berton, G.; Lowell, C.A. Integrin Signalling in Neutrophils and Macrophages. Cell. Signal. 1999, 11, 621–635. [Google Scholar] [CrossRef]
- Kilpadi, K.L.; Chang, P.-L.; Bellis, S.L. Hydroxylapatite Binds More Serum Proteins, Purified Integrins, and Osteoblast Precursor Cells than Titanium or Steel. J. Biomed. Mater. Res. 2001, 57, 258–267. [Google Scholar] [CrossRef]
- Horbett, T.A.; Latour, R.A. Adsorbed Proteins on Biomaterials. Biomater. Sci. 2020, 645–660. [Google Scholar] [CrossRef]
- Rivera-Chacon, D.M.; Alvarado-Velez, M.; Acevedo-Morantes, C.Y.; Singh, S.P.; Gultepe, E.; Nagesha, D.; Sridhar, S.; Ramirez-Vick, J.E. Fibronectin and Vitronectin Promote Human Fetal Osteoblast Cell Attachment and Proliferation on Nanoporous Titanium Surfaces. J. Biomed. Nanotechnol. 2013, 9, 1092–1097. [Google Scholar] [CrossRef]
- Benito-Jardón, M.; Klapproth, S.; Gimeno-Lluch, I.; Petzold, T.; Bharadwaj, M.; Müller, D.J.; Zuchtriegel, G.; Reichel, C.A.; Costell, M. The Fibronectin Synergy Site Re-Enforces Cell Adhesion and Mediates a Crosstalk between Integrin Classes. Elife 2017, 6, e22264. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Zhang, L.; Yan, J.; Shao, C.; Jing, L.; Li, L.; Wang, Z. Role of Macrophages in the Progression and Regression of Vascular Calcification. Front. Pharmacol. 2020, 11, 661. [Google Scholar] [CrossRef]
- Pagani, G.; Gohlke, H. On the Contributing Role of the Transmembrane Domain for Subunit-Specific Sensitivity of Integrin Activation. Sci. Rep. 2018, 8, 5733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Colomé, A.M.; Lee-Rivera, I.; Benavides-Hidalgo, R.; López, E. Paxillin: A Crossroad in Pathological Cell Migration. J. Hematol. Oncol. 2017, 10, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanimura, S.; Takeda, K. ERK Signalling as a Regulator of Cell Motility. J. Biochem. 2017, 162, 145–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subauste, M.C.; Pertz, O.; Adamson, E.D.; Turner, C.E.; Junger, S.; Hahn, K.M. Vinculin Modulation of Paxillin–FAK Interactions Regulates ERK to Control Survival and Motility. J. Cell Biol. 2004, 165, 371. [Google Scholar] [CrossRef]
- Rodríguez-Carballo, E.; Gámez, B.; Ventura, F. P38 MAPK Signaling in Osteoblast Differentiation. Front. Cell Dev. Biol. 2016, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, R.T.; Ge, C. Control of the Osteoblast Lineage by Mitogen-Activated Protein Kinase Signaling. Curr. Mol. Biol. Rep. 2017, 3, 122–132. [Google Scholar] [CrossRef]
- Kang, M.A.; Lee, J.; Park, S.H. Cannabidiol Induces Osteoblast Differentiation via Angiopoietin1 and P38 MAPK. Environ. Toxicol. 2020, 35, 1318–1325. [Google Scholar] [CrossRef]
- Shen, M.J.; Wang, G.G.; Wang, Y.Z.; Xie, J.; Ding, X. Nell-1 Enhances Osteogenic Differentiation of Pre-Osteoblasts on Titanium Surfaces via the MAPK-ERK Signaling Pathway. Cell. Physiol. Biochem. 2018, 50, 1522–1534. [Google Scholar] [CrossRef]
- Cong, Q.; Jia, H.; Biswas, S.; Li, P.; Qiu, S.; Deng, Q.; Guo, X.; Ma, G.; Ling Chau, J.F.; Wang, Y.; et al. P38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions. Stem Cell Rep. 2016, 6, 566–578. [Google Scholar] [CrossRef] [Green Version]
- Anghelescu, V.M.; Neculae, I.; Dincă, O.; Vlădan, C.; Socoliuc, C.; Cioplea, M.; Nichita, L.; Popp, C.; Zurac, S.; Bucur, A. Inflammatory-Driven Angiogenesis in Bone Augmentation with Bovine Hydroxyapatite, B-Tricalcium Phosphate, and Bioglasses: A Comparative Study. J. Immunol. Res. 2018, 2018, 9349207. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, Y.; Zhu, X.; Yuan, T.; Tan, Y.; Fan, Y.; Zhang, X. Effect of Phase Composition on Protein Adsorption and Osteoinduction of Porous Calcium Phosphate Ceramics in Mice. J. Biomed. Mater. Res. A 2014, 102, 4234–4243. [Google Scholar] [CrossRef]
- Guntur, A.R.; Rosen, C.J. IGF-1 Regulation of Key Signaling Pathways in Bone. Bonekey Rep. 2013, 2, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, S.; Cha, B.H.; Kim, J.S.; Ahn, J.; Han, I.; Park, H.; Lee, S.H. Regulation of Senescence Associated Signaling Mechanisms in Chondrocytes for Cartilage Tissue Regeneration. Osteoarthr. Cartil. 2016, 24, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrektsson, T.; Johansson, C. Osteoinduction, Osteoconduction and Osseointegration. Eur. Spine J. 2001, 10 (Suppl. S2), S96–S101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, P.; Zhu, D.; Deng, X.; Zhang, Y.; Ma, J.; Sun, X.; Liu, Y. Effect of Hydroxyapatite Nanoparticles and Wedelolactone on Osteoblastogenesis from Bone Marrow Mesenchymal Stem Cells. J. Biomed. Mater. Res. A 2019, 107, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Yang, Y.S.; Park, K.H.; Ge, X.; Xu, R.; Li, N.; Song, M.; Chun, H.; Bok, S.; Charles, J.F.; et al. A RUNX2 Stabilization Pathway Mediates Physiologic and Pathologic Bone Formation. Nat. Commun. 2020, 11, 2289. [Google Scholar] [CrossRef]
- Campi, G.; Cristofaro, F.; Pani, G.; Fratini, M.; Pascucci, B.; Corsetto, P.A.; Weinhausen, B.; Cedola, A.; Rizzo, A.M.; Visai, L.; et al. Heterogeneous and Self-Organizing Mineralization of Bone Matrix Promoted by Hydroxyapatite Nanoparticles. Nanoscale 2017, 9, 17274–17283. [Google Scholar] [CrossRef] [Green Version]
- Köllmer, M.; Buhrman, J.S.; Zhang, Y.; Gemeinhart, R.A. Markers Are Shared Between Adipogenic and Osteogenic Differentiated Mesenchymal Stem Cells. J. Dev. Biol. Tissue Eng. 2013, 5, 18. [Google Scholar] [CrossRef]
- Si, J.; Wang, C.; Zhang, D.; Wang, B.; Hou, W.; Zhou, Y. Osteopontin in Bone Metabolism and Bone Diseases. Med. Sci. Monit. 2020, 26, e919159-1–e919159-9. [Google Scholar] [CrossRef]
- Brown, M.D.; Malinin, T.I.; Davis, P.B. A Roentgenographic Evaluation of Frozen Allografts versus Autografts in Anterior Cervical Spine Fusions. Clin. Orthop. Relat. Res. 1976, 119, 231–236. [Google Scholar] [CrossRef]
- Kim, P.; Wakai, S.; Matsuo, S.; Moriyama, T.; Kirino, T. Bisegmental Cervical Interbody Fusion Using Hydroxyapatite Implants: Surgical Results and Long-Term Observation in 70 Cases. J. Neurosurg. 1998, 88, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Chul Kim, S.; Won Kang, S.; Hyuk Kim, S.; Hong Cho, K.; Hyun Kim, S. Clinical and Radiological Outcomes of Anterior Cervical Interbody Fusion Using Hydroxyapatite Spacer. J Korean Neurosurg 2009, 46, 300–304. [Google Scholar] [CrossRef]
- Wen, Z.; Lu, T.; Wang, Y.; Liang, H.; Gao, Z.; He, X. Anterior Cervical Corpectomy and Fusion and Anterior Cervical Discectomy and Fusion Using Titanium Mesh Cages for Treatment of Degenerative Cervical Pathologies: A Literature Review. Med. Sci. Monit. 2018, 24, 6398. [Google Scholar] [CrossRef] [PubMed]
- Kersten, R.F.M.R.; Van Gaalen, S.M.; De Gast, A.; Öner, F.C. Polyetheretherketone (PEEK) Cages in Cervical Applications: A Systematic Review. Spine J. 2015, 15, 1446–1460. [Google Scholar] [CrossRef]
- Cawley, D.T.; Alzakri, A.; Fujishiro, T.; Kieser, D.C.; Tavalaro, C.; Boissiere, L.; Obeid, I.; Pointillart, V.; Vital, J.M.; Gille, O. Carbon-Fibre Cage Reconstruction in Anterior Cervical Corpectomy for Multilevel Cervical Spondylosis: Mid-Term Outcomes. J. Spine Surg. 2019, 5, 251. [Google Scholar] [CrossRef]
- Yoshii, T.; Yuasa, M.; Sotome, S.; Yamada, T.; Sakaki, K.; Hirai, T.; Taniyama, T.; Inose, H.; Kato, T.; Arai, Y.; et al. Porous/Dense Composite Hydroxyapatite for Anterior Cervical Discectomy and Fusion. Spine 2013, 38, 833–840. [Google Scholar] [CrossRef]
- Yoshii, T.; Hirai, T.; Sakai, K.; Sotome, S.; Enomoto, M.; Yamada, T.; Inose, H.; Kato, T.; Kawabata, S.; Okawa, A. Anterior Cervical Corpectomy and Fusion Using a Synthetic Hydroxyapatite Graft for Ossification of the Posterior Longitudinal Ligament. Orthopedics 2017, 40, e334–e339. [Google Scholar] [CrossRef]
- Suetsuna, F.; Yokoyama, T.; Kenuka, E.; Harata, S. Anterior Cervical Fusion Using Porous Hydroxyapatite Ceramics for Cervical Disc Herniation: A Two-Year Follow-Up. Spine J. 2001, 1, 348–357. [Google Scholar] [CrossRef]
- Emery, S.; Bolesta, M.; Banks, M.; Jones, P. Robinson Anterior Cervical Fusion Comparison of the Standard and Modified Techniques. Spine 1994, 19, 660–663. [Google Scholar] [CrossRef]
- Gruskin, E.; Doll, B.A.; Futrell, F.W.; Schmitz, J.P.; Hollinger, J.O. Demineralized Bone Matrix in Bone Repair: History and Use. Adv. Drug Deliv. Rev. 2012, 64, 1063. [Google Scholar] [CrossRef]
- Aghdasi, B.; Montgomery, S.R.; Daubs, M.D.; Wang, J.C. A Review of Demineralized Bone Matrices for Spinal Fusion: The Evidence for Efficacy. Surgeon 2013, 11, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.R.; Cassilly, R.; Cantor, W.; Edusei, E.; Hammouri, Q.; Errico, T. A Systematic Review of Comparative Studies on Bone Graft Alternatives for Common Spine Fusion Procedures. Eur. Spine J. 2013, 22, 1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Silva, R.; Pasbakhsh, P.; Qureshi, A.J.; Gibson, A.G.; Goh, K.L. Stress Transfer and Fracture in Nanostructured Particulate-Reinforced Chitosan Biopolymer Composites: Influence of Interfacial Shear Stress and Particle Slenderness. Compos. Interfaces 2014, 21, 807–818. [Google Scholar] [CrossRef]
- Xie, J.Z.; Hein, S.; Wang, K.; Liao, K.; Goh, K.L. Influence of Hydroxyapatite Crystallization Temperature and Concentration on Stress Transfer in Wet-Spun Nanohydroxyapatite-Chitosan Composite Fibres. Biomed. Mater. 2008, 3, 025014. [Google Scholar] [CrossRef]
- Thalgott, J.S.; Fritts, K.; Giuffre, J.M.; Timlin, M. Anterior Interbody Fusion of the Cervical Spine with Coralline Hydroxyapatite. Spine 1999, 24, 1295–1299. [Google Scholar] [CrossRef]
- Qin, Z.; Gautieri, A.; Nair, A.K.; Inbar, H.; Buehler, M.J. Thickness of Hydroxyapatite Nanocrystal Controls Mechanical Properties of the Collagen-Hydroxyapatite Interface. Langmuir 2012, 28, 1982–1992. [Google Scholar] [CrossRef]
- Robbins, S.; Lauryssen, C.; Songer, M.N. Use of Nanocrystalline Hydroxyapatite With Autologous BMA and Local Bone in the Lumbar Spine: A Retrospective CT Analysis of Posterolateral Fusion Results. Clin. Spine Surg. 2017, 30, E192. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium Orthophosphate Coatings on Magnesium and Its Biodegradable Alloys. Acta Biomater. 2014, 10, 2919–2934. [Google Scholar] [CrossRef]
- Timothy, J.; Wilson, J.; Rice, E.; Hall, R. Nanocrystalline Hydroxyapatite Intervertebral Cages Induce Fusion after Anterior Cervical Discectomy and May Be a Safe Alternative to PEEK or Carbon Fiber Intervertebral Cages. Br. J. Neurosurg. 2016, 30, 654–657. [Google Scholar] [CrossRef]
- Upadhyay, D.J.; Cui, N.Y.; Anderson, C.A.; Brown, N.M.D. A Comparative Study of the Surface Activation of Polyamides Using an Air Dielectric Barrier Discharge. Colloids Surfaces A Physicochem. Eng. Asp. 2004, 248, 47–56. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Zuo, Y.; Li, J.; Ma, S.; Cheng, L. Biocompatibility and Osteogenesis of Biomimetic Nano-Hydroxyapatite/Polyamide Composite Scaffolds for Bone Tissue Engineering. Biomaterials 2007, 28, 3338–3348. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Ma, P.X. Structure and Properties of Nano-Hydroxyapatite/Polymer Composite Scaffolds for Bone Tissue Engineering. Biomaterials 2004, 25, 4749–4757. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, Q.; Liu, L.; Song, Y.; Kong, Q.; Zeng, J.; Xue, Y.; Ren, C. Comparison of Anterior Cervical Fusion by Titanium Mesh Cage versus Nano-Hydroxyapatite/Polyamide Cage Following Single-Level Corpectomy. Int. Orthop. 2013, 37, 2421–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Qiu, Z.Y.; Zhang, W.Q.; Cui, H.; Wang, C.M.; Guo, W.G.; Dong, Y.Q.; Cui, F.Z. In Vivo Evaluation of Nano-Crystal Hydroxyapatite Intervertebral Fusion Cage. J. Biomater. Tissue Eng. 2014, 4, 126–132. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.; Hu, Y.; Lyu, Q.; Liu, L.; Zhu, C.; Zhou, C.; Song, Y. The N-HAp/PA66 Cage Versus the PEEK Cage in Anterior Cervical Fusion with Single-Level Discectomy During 7 Years of Follow-Up. World Neurosurg. 2019, 123, e678–e684. [Google Scholar] [CrossRef]
- Yang, X.; Liu, L.; Song, Y.; Kong, Q.; Zeng, J.; Tu, C. Outcome of Single Level Anterior Cervical Discectomy and Fusion Using Nano-Hydroxyapatite/Polyamide-66 Cage. Indian J. Orthop. 2014, 48, 152–157. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiang, D.; Ou, Y.; Tang, K.; Luo, X.; Quan, Z. A Hollow Cylindrical Nano-Hydroxyapatite/Polyamide Composite Strut for Cervical Reconstruction after Cervical Corpectomy. J. Clin. Neurosci. 2012, 19, 536–540. [Google Scholar] [CrossRef]
- Zhang, Y.; Quan, Z.; Zhao, Z.; Luo, X.; Tang, K.; Li, J.; Zhou, X.; Jiang, D. Evaluation of Anterior Cervical Reconstruction with Titanium Mesh Cages versus Nano-Hydroxyapatite/Polyamide66 Cages after 1- Or 2-Level Corpectomy for Multilevel Cervical Spondylotic Myelopathy: A Retrospective Study of 117 Patients. PLoS ONE 2014, 9, e96265. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Lee, G.W.; Nam, W.D.; Han, K.Y.; Kim, M.-H.; Kang, J.W.; Won, J.; Kim, S.W.; Noh, W.; Yeom, J.S. A Prospective Randomized Clinical Trial Comparing Bone Union Rate Following Anterior Cervical Discectomy and Fusion Using a Polyetheretherketone Cage: Hydroxyapatite/B-Tricalcium Phosphate Mixture versus Hydroxyapatite/Demineralized Bone Matrix Mixture. Asian Spine J. 2015, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Chin, K.R.; Gohel, N.N.; Aloise, D.M.; Seale, J.A.; Pandey, D.K.; Pencle, F.J. Effectiveness of a Fully Impregnated Hydroxyapatite Polyetheretherketone Cage on Fusion in Anterior Cervical Spine Surgery. Cureus 2021, 13, e17457. [Google Scholar] [CrossRef]
- Moussazadeh, N.; Rubin, D.G.; McLaughlin, L.; Lis, E.; Bilsky, M.H.; Laufer, I. Short-Segment Percutaneous Pedicle Screw Fixation with Cement Augmentation for Tumor-Induced Spinal Instability. Spine J. 2015, 15, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, T.; Ataka, H.; Kato, K.; Tanno, T. Good Clinical Outcomes and Fusion Rate of Facet Fusion With a Percutaneous Pedicle Screw System for Degenerative Lumbar Spondylolisthesis. Spine 2015, 40, E552–E557. [Google Scholar] [CrossRef] [PubMed]
- Proietti, L.; Scaramuzzo, L.; Schirò, G.R.; Sessa, S.; D’Aurizio, G.; Tamburrelli, F.C. Posterior Percutaneous Reduction and Fixation of Thoraco-Lumbar Burst Fractures. Orthop. Traumatol. Surg. Res. 2014, 100, 455–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, W.Y.; Lenke, L.G.; Luk, K.D.K. Prediction of Scoliosis Correction With Thoracic Segmental Pedicle Screw Constructs Using Fulcrum Bending Radiographs. Spine 2010, 35, 557–561. [Google Scholar] [CrossRef] [Green Version]
- Shimamoto, N.; Kotani, Y.; Shono, Y.; Kadoya, K.; Abumi, K.; Kaneda, K.; Minami, A. Biomechanical Evaluation of Anterior Spinal Instrumentation Systems for Scoliosis. Spine 2001, 26, 2701–2708. [Google Scholar] [CrossRef]
- Renner, S.M.; Lim, T.H.; Kim, W.J.; Katolik, L.; An, H.S.; Andersson, G.B.J. Augmentation of Pedicle Screw Fixation Strength Using an Injectable Calcium Phosphate Cement as a Function of Injection Timing and Method. Spine 2004, 29, E212–E216. [Google Scholar] [CrossRef]
- Di Lorenzo, N.; Conti, R.; Romoli, S. Retrieval of Broken Pedicle Screws by “friction” Technique: Technical Note. J. Neurosurg. 2000, 92 (Suppl. S1), 114–116. [Google Scholar] [CrossRef]
- Berlemann, U.; Cripton, P.A.; Rincon, L.; Nolte, L.P.; Schläpfer, F. Pull-out Strength of Pedicle Hooks with Fixation Screws: Influence of Screw Length and Angulation. Eur. Spine J. 1996, 5, 71–73. [Google Scholar] [CrossRef]
- Lehman, R.A.; Kang, D.G.; Wagner, S.C. Management of Osteoporosis in Spine Surgery. J. Am. Acad. Orthop. Surg. 2015, 23, 253–263. [Google Scholar] [CrossRef]
- Giavaresi, G.; Fini, M.; Giardino, R.; Salamanna, F.; Sartori, M.; Borsari, V.; Spriano, S.; Bellini, C.M.; Brayda-Bruno, M. In Vivo Preclinical Evaluation of the Influence of Osteoporosis on the Anchorage of Different Pedicle Screw Designs. Eur. Spine J. 2011, 20, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Ohtori, S.; Inoue, G.; Orita, S.; Yamauchi, K.; Eguchi, Y.; Ochiai, N.; Kishida, S.; Kuniyoshi, K.; Aoki, Y.; Nakamura, J.; et al. Comparison of Teriparatide and Bisphosphonate Treatment to Reduce Pedicle Screw Loosening after Lumbar Spinal Fusion Surgery in Postmenopausal Women with Osteoporosis from a Bone Quality Perspective. Spine 2013, 38, E487–E492. [Google Scholar] [CrossRef]
- Burval, D.J.; McLain, R.F.; Milks, R.; Inceoglu, S. Primary Pedicle Screw Augmentation in Osteoporotic Lumbar Vertebrae. Spine 2007, 32, 1077–1083. [Google Scholar] [CrossRef]
- Liu, D.; Wu, Z.X.; Pan, X.M.; Fu, S.C.; Gao, M.X.; Shi, L.; Lei, W. Biomechanical Comparison of Different Techniques in Primary Spinal Surgery in Osteoporotic Cadaveric Lumbar Vertebrae: Expansive Pedicle Screw versus Polymethylmethacrylate-Augmented Pedicle Screw. Arch. Orthop. Trauma Surg. 2011, 131, 1227–1232. [Google Scholar] [CrossRef]
- Frankel, B.M.; D’Agostino, S.; Wang, C. A Biomechanical Cadaveric Analysis of Polymethylmethacrylate-Augmented Pedicle Screw Fixation. J. Neurosurg. Spine 2007, 7, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.X.; Gong, F.T.; Liu, L.; Ma, Z.S.; Zhang, Y.; Zhao, X.; Yang, M.; Lei, W.; Sang, H.X. A Comparative Study on Screw Loosening in Osteoporotic Lumbar Spine Fusion between Expandable and Conventional Pedicle Screws. Arch. Orthop. Trauma Surg. 2012, 132, 471–476. [Google Scholar] [CrossRef]
- Xie, Y.; Fu, Q.; Chen, Z.Q.; Shi, Z.C.; Zhu, X.D.; Wang, C.F.; Li, M. Comparison between Two Pedicle Screw Augmentation Instrumentations in Adult Degenerative Scoliosis with Osteoporosis. BMC Musculoskelet. Disord. 2011, 12, 286. [Google Scholar] [CrossRef] [Green Version]
- Koller, H.; Zenner, J.; Hitzl, W.; Resch, H.; Stephan, D.; Augat, P.; Penzkofer, R.; Korn, G.; Kendell, A.; Meier, O.; et al. The Impact of a Distal Expansion Mechanism Added to a Standard Pedicle Screw on Pullout Resistance. A Biomechanical Study. Spine J. 2013, 13, 532–541. [Google Scholar] [CrossRef]
- Becker, S.; Chavanne, A.; Spitaler, R.; Kropik, K.; Aigner, N.; Ogon, M.; Redl, H. Assessment of Different Screw Augmentation Techniques and Screw Designs in Osteoporotic Spines. Eur. Spine J. 2008, 17, 1462–1469. [Google Scholar] [CrossRef] [Green Version]
- Galbusera, F.; Volkheimer, D.; Reitmaier, S.; Berger-Roscher, N.; Kienle, A.; Wilke, H.J. Pedicle Screw Loosening: A Clinically Relevant Complication? Eur. Spine J. 2015, 24, 1005–1016. [Google Scholar] [CrossRef]
- Elder, B.D.; Lo, S.F.L.; Holmes, C.; Goodwin, C.R.; Kosztowski, T.A.; Lina, I.A.; Locke, J.E.; Witham, T.F. The Biomechanics of Pedicle Screw Augmentation with Cement. Spine J. 2015, 15, 1432–1445. [Google Scholar] [CrossRef]
- Yi, S.; Rim, D.C.; Park, S.W.; Murovic, J.A.; Lim, J.; Park, J. Biomechanical Comparisons of Pull Out Strengths After Pedicle Screw Augmentation with Hydroxyapatite, Calcium Phosphate, or Polymethylmethacrylate in the Cadaveric Spine. World Neurosurg. 2015, 83, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.J.; Lee, J.-H.; Lee, J.H. Influence of Hydroxyapatite Stick on Pedicle Screw Fixation in Degenerative Lumbar Spine. Clin. Spine Surg. 2017, 30, E819–E826. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kim, S.H.; Kim, K.H.; Jhin, M.J.; Kim, W.K.; Lee, Y.K.; Seol, Y.J.; Lee, Y.M. Rabbit Maxillary Sinus Augmentation Model with Simultaneous Implant Placement: Differential Responses to the Graft Materials. J. Periodontal Implant. Sci. 2012, 42, 204–211. [Google Scholar] [CrossRef]
- Kirchhoff, M.; Lenz, S.; Henkel, K.O.; Frerich, B.; Holzhüter, G.; Radefeldt, S.; Gerber, T. Lateral Augmentation of the Mandible in Minipigs with a Synthetic Nanostructured Hydroxyapatite Block. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 96B, 342–350. [Google Scholar] [CrossRef]
- Kanno, H.; Aizawa, T.; Hashimoto, K.; Itoi, E. Novel Augmentation Technique of Percutaneous Pedicle Screw Fixation Using Hydroxyapatite Granules in the Osteoporotic Lumbar Spine: A Cadaveric Biomechanical Analysis. Eur. Spine J. 2020, 30, 71–78. [Google Scholar] [CrossRef]
- Kanno, H.; Aizawa, T.; Hashimoto, K.; Itoi, E. Enhancing Percutaneous Pedicle Screw Fixation with Hydroxyapatite Granules: A Biomechanical Study Using an Osteoporotic Bone Model. PLoS ONE 2019, 14, e0223106. [Google Scholar] [CrossRef]
Type of Cage | Material | Fusion Rate | Time to Achieve Solid Fusion | Subsidence Rate | Disadvantages |
---|---|---|---|---|---|
Autograft | Natural bone harvested from iliac bone | 85–100% [102] | ~6 months [96] | ~0% [96] | morbidity at the donor site, increased blood loss, limited amount |
Standard cages | |||||
TMC Cage | Titanium | 94–96% [113,118] | 5–7 months [93] | From 4 to 22% [93,113,115] | difficulty in radiographic assessment, stress shielding effect [93,113] |
PEEK Cage | Polyetheretherketone | 88–100% [94] | 7–8 months [120] | From 9.8% to 14.3% [115] | lack of osteointegration of the cage, difficulty in radiographic assessment [94] |
Hydroxyapatite cages | |||||
nHA/PA66 Cage | Nanohydroxyapatite infiltrating into polyamide 66 | 97%–98% [113,115,118] | - | From 2 to 10.6% [38,113,115,116,117,118] | difficult radiographic assessment of solid fusion, but easier compared with TMC [113] |
Hydroxyapatite/PEEK Cage | Composite of 80% PEEK and 20% calcium hydroxyapatite | ~100% [120] | 3–5 months [120] | - | lack of clinical studies, difficulty in radiographic assessment |
Procedure | HAp Formulation |
---|---|
Anterior Cervical Discectomy and Fusion | Nanohydroxyapatite |
Nanohydroxyapatite/polyamide 66 composite | |
Hydroxyapatite/PEEK coating | |
Hydroxyapatite/PEEK composite | |
Lumbar Spinal Fusion | Hydroxyapatite/beta-TCP |
Nanohydroxyapatite | |
Pedicle Screw Fixation | Hydroxyapatite screw coating |
Hydroxyapatite sticks | |
Hydroxyapatite granules |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litak, J.; Czyzewski, W.; Szymoniuk, M.; Pastuszak, B.; Litak, J.; Litak, G.; Grochowski, C.; Rahnama-Hezavah, M.; Kamieniak, P. Hydroxyapatite Use in Spine Surgery—Molecular and Clinical Aspect. Materials 2022, 15, 2906. https://doi.org/10.3390/ma15082906
Litak J, Czyzewski W, Szymoniuk M, Pastuszak B, Litak J, Litak G, Grochowski C, Rahnama-Hezavah M, Kamieniak P. Hydroxyapatite Use in Spine Surgery—Molecular and Clinical Aspect. Materials. 2022; 15(8):2906. https://doi.org/10.3390/ma15082906
Chicago/Turabian StyleLitak, Jakub, Wojciech Czyzewski, Michał Szymoniuk, Bartlomiej Pastuszak, Joanna Litak, Grzegorz Litak, Cezary Grochowski, Mansur Rahnama-Hezavah, and Piotr Kamieniak. 2022. "Hydroxyapatite Use in Spine Surgery—Molecular and Clinical Aspect" Materials 15, no. 8: 2906. https://doi.org/10.3390/ma15082906
APA StyleLitak, J., Czyzewski, W., Szymoniuk, M., Pastuszak, B., Litak, J., Litak, G., Grochowski, C., Rahnama-Hezavah, M., & Kamieniak, P. (2022). Hydroxyapatite Use in Spine Surgery—Molecular and Clinical Aspect. Materials, 15(8), 2906. https://doi.org/10.3390/ma15082906