Hybrid testing of lumbar CHARITE discs versus fusions

Spine (Phila Pa 1976). 2007 Apr 20;32(9):959-66; discussion 967. doi: 10.1097/01.brs.0000260792.13893.88.

Abstract

Study design: An in vitro human cadaveric biomechanical study.

Objectives: To quantify effects on operated and other levels, including adjacent levels, due to CHARITE disc implantations versus simulated fusions, using follower load and the new hybrid test method in flexion-extension and bilateral torsion.

Summary of background data: Spinal fusion has been associated with long-term accelerated degeneration at adjacent levels. As opposed to the fusion, artificial discs are designed to preserve motion and diminish the adjacent-level effects.

Methods: Five fresh human cadaveric lumbar specimens (T12-S1) underwent multidirectional testing in flexion-extension and bilateral torsion with 400 N follower load. Intact specimen total ranges of motion were determined with +/-10 Nm unconstrained pure moments. The intact range of motion was used as input for the hybrid tests of 5 constructs: 1) CHARITE disc at L5-S1; 2) fusion at L5-S1; 3) CHARITE discs at L4-L5 and L5-S1; 4) CHARITE disc at L4-L5 and fusion at L5-S1; and 5) 2-level fusion at L4-L5-S1. Using repeated-measures single factor analysis of variance and Bonferroni statistical tests (P < 0.05), intervertebral motion redistribution of each construct was compared with the intact.

Results: In flexion-extension, 1-level CHARITE disc preserved motion at the operated and other levels, while 2-level CHARITE showed some amount of other-level effects. In contrast, 1- and 2-level fusions increased other-level motions (average, 21.0% and 61.9%, respectively). In torsion, both 1- and 2-level discs preserved motions at all levels. The 2-level simulated fusion increased motions at proximal levels (22.9%), while the 1-level fusion produced no significant changes.

Conclusions: In general, CHARITE discs preserved operated- and other-level motions. Fusion simulations affected motion redistribution at other levels, including adjacent levels.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Arthrodesis
  • Biomechanical Phenomena
  • Cadaver
  • Female
  • Humans
  • Intervertebral Disc / surgery*
  • Lumbar Vertebrae / surgery
  • Male
  • Middle Aged
  • Prostheses and Implants*
  • Range of Motion, Articular
  • Spinal Fusion / methods*